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This Study and Revision Guide has the following characteristics:

1. The content is in the same order as the official IB Physics syllabus wherever 
possible. All the ‘Understandings’ and ‘Applications and skills’ in the syllabus 
have been used among the headings. All equations and data in the IB Physics 
Data booklet have been highlighted (in bold green font) in the guide.

2. Essential knowledge has been included as Key Concepts (mostly) on the right 
hand side of the pages.

3. All other important items for revision have been included as bullet points.

4. Also included are Common mistakes and Expert tips (helpful knowledge on the 
‘edge’ of the syllabus, that may not be essential in a first revision).

5. When scientific terms have been introduced, they have been stressed in bold 
orange font and are included in a glossary, which is in the online resources.

6. This guide contains a large number of questions within the revision material. 
These are designed to be a straightforward check of understanding of the 
concepts covered. Detailed answers are included in the online resources.

7. Preparing for the IB Physics Diploma examination has been included as an 
appendix in the online resources.

8. All revision material for the Options is to be found online.

Introduction



Preparing for an examination is not anybody’s idea of fun. But it has to be done, 
and the process needs to be made as manageable as possible.

Everybody is different, and every student needs to develop their own best working 
habits.  However, teachers will mostly agree on the following advice.

1. Know the syllabus. The headings within this study and revision guide are a 
close representation of the syllabus. 

2. Identify the parts of the syllabus in which you feel less confident. Don’t 
waste time revising things you already know well. Concentrate on your 
weaknesses, not your strengths. 

3. Make a schedule. Be realistic. Do not attempt to work too long at any one 
time. Work at regular times.

4. Make revision an active process. Answering questions, writing, asking; not 
just reading or watching.

5. Understanding is much more important than remembering. If you 
understand a topic well, you will not need to make much effort to remember it.

6. Know the exam. Good exam technique is important (see online advice). 
Practice under examination conditions is always useful.

7. Final revision. This may be best as a simple review of the Key Concepts and 
equations highlighted in this Guide. 

How to use this revision guide



Measurement and uncertaintiesTopic 1 

1.1 Measurements in physics 
Essential idea: Since 1948, the Système International d’Unités (SI) has been used 
as the preferred language of science and technology across the globe and reflects 
current best measurement practice.

Fundamental units 
■ The following are the fundamental units of the SI system of measurement:

 mass: kilogram (kg)
 length: metre (m)
 time: second (s)
 electric current: ampere (amp) (A)
 amount of substance: mole (mol)
 absolute temperature: kelvin (K)
 (A seventh fundamental unit, the candela, used for light intensity, is not 

used in this course.)
■ The fundamental units are all completely independent of each other, and 

all scientific measurements can be expressed in terms of these units (only). 
(Fundamental units are sometimes called base units.)

■ Since all scientific measurement is based on these units, they require very 
precise definitions. These definitions are not part of the IB Physics course, 
except for the mole and the kelvin, which are explained in Chapter 3. 

Expert tip

As physics has developed and 
measurements have become more 
accurate and precise, the definitions 
of fundamental units have evolved. 
The metre was originally defined as 
one ten-millionth of the distance 
from the North Pole to the equator, 
but that is certainly not precise 
enough for modern science. The 
metre is now defined as the length of 
the path travelled by light in vacuum 
during a time interval of 1

299 792 458
 of 

a second. (Neither of these definitions 
need to be remembered!)

Derived units
■ Derived units are combinations of fundamental units. For example the 

derived unit of density is kg m–3. Some derived units have their own name, for 
example, the unit of pressure, N m–2, is called the pascal, Pa. These units are 
explained whenever they are introduced.

■ Sometimes physicists use units that are not part of the SI system, for example 
years (y), electron volts (eV) or kilowatt-hours (kWh). When such non-SI units 
are used it is important to be able to convert between the units and the SI 
units for the same quantity. For example, 1 kWh = 3.6 × 106 J. 

■ The accepted format for writing derived units is, for example, W m–2 for watts 
per square metre, and not W/m2.

Scientific notation and 
metric multipliers
■ Physics calculations can vary in scale from everyday life, to the incredibly 

small (atoms), to the astronomically large (distant galaxies).
■ A consistent way of presenting data (a scientific notation) is needed which can 

cope with such enormous variations.

 Using scientific notation and metric multipliers 
■ Values in science are commonly expressed using scientific notation, for 

example 3.9820 × 104, rather than 39 820.
■ There should always be one (non-zero) digit before the decimal point. Zero(s) 

placed at the end of the number should have the same importance as any 
other digit.

1 



1 Measurement and uncertainties2

■ In everyday conversation we use words like thousand and million to help 
represent large numbers. Science uses a wide range of multipliers and the 
metric multipliers that may be used in the course are shown in Table 1.1.

Table 1.1

Prefix Abbreviation Value

peta P 1015

tera T 1012

giga G 109 

mega M 106 

kilo k 103 

deca da 101 

deci d 10−1

centi c 10−2

milli m 10−3

micro μ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

Significant figures
■ Significant figures are all the digits (including zeros) used in numerical data 

to have meaning. 
■ All the digits used in scientific notation are significant figures. For example 

3.48 × 106 has three significant figures.
■ The number of significant figures used in data should represent the precision of 

that data. 

 Using SI units in the correct format for all required 
measurements, final answers to calculations and 
presentation of raw and processed data 

QUESTIONS TO CHECK UNDERSTANDING
1 Express the following derived units in terms of fundamental units:

a the newton

b the coulomb

c the volt

d the radian.

2 Write the following numbers in standard notation:

a 823.79

b 0.0002840

c 2

3 Convert the following into SI units:

a 23 °C

b 19.3 kWh

c 38 eV

d 50 km h−1

e 1 year.

4 a Express 2.4 × 1012 W in i kW, ii MW, iii GW.

b Express in amps: i 347 mA, ii 78.4 nA.

5 Express 3.826 to:

a 3 significant figures

b 2 significant figures

c 1 significant figure.

Common mistakes

When data is not presented in 
scientific notation, the significance of 
zeros is often unclear.
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Estimation 
 Estimating quantities to an appropriate number of 
significant figures

■ It is an important skill to be able to make reasonable estimates of various 
quantities (and give them to a sensible number of significant figures), and to 
use such estimates to make comparisons between quantities to the nearest 
order of magnitude.

 Orders of magnitude
■ When quantities are quoted to the nearest power of 10, it is called giving them 

an order of magnitude.

QUESTIONS TO CHECK UNDERSTANDING
6 Without making any calculations, estimate order of magnitude values for 

the following:

a the mass of a chicken egg

b the thickness of a page in a book

c the temperature of a flame used in cooking.

7 Estimate the volume of water in the volcanic lake shown in Figure 1.1.

Figure 1.1 

8 Make calculations to estimate:

a the pressure underneath the wheel of family car

b the time it takes a light photon to travel across a room

c the electrical resistance of a domestic iron.

9 Give order of magnitude ratios for the following:

a mass of a family car / mass of a small coin

b power provided by a large power station / power provided by a torch battery

c the period of a long pendulum / the period of the sound from a 
referee’s whistle.

Expert tip 

Consider, as examples, the numbers 279, 579 and 379. The number 279 to 
the nearest order of magnitude is 100 (102) and 579 to the nearest order of 
magnitude is 1000 (103). The number 379 is closer to 100 than 1000, so it may 
seem sensible to say that its nearest order of magnitude is 100 (102). However, since 
log 379 = 2.58, the nearest order of magnitude is 103.

 Quoting and comparing ratios, values and 
approximations to the nearest order of magnitude 
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NATURE OF SCIENCE

 Common terminology
Scientific and technological information is now quickly and easily transferred 
around the world, mostly using SI units and internationally agreed mathematical 
and scientific symbols. In earlier centuries things were very different and 
communication in different languages, using inconsistent symbols and units were 
significant problems inhibiting scientific progress. 

 Improvement in instrumentation
No matter how precise and accurate a measurement may be, there is always the 
possibility that future developments in instrumentation and technique will result 
in even greater precision. Because of this, the definitions of fundamental units 
have been improved in the past and this may well continue in the future.

 Certainty
Many people believe that science deals with facts, truth and certainty. In practice, 
most scientists will readily admit to the opposite: they are 100% certain of very 
little, and all measurements have a measure of uncertainty. 

1.2 Uncertainties and errors
Essential idea: Scientists aim towards designing experiments that can give a ‘true 
value’ from their measurements, but due to the limited precision in measuring 
devices, they often quote their results with some form of uncertainty.

Errors, accuracy and precision 
■ It is an aim of good experimental techniques and apparatus to keep errors and

uncertainties as small as possible.
■ We will assume that errors in measurement are due to limitations of

equipment or the techniques used, and not due to mistakes made by the person
carrying out the experiment.

 A single measurement which has only a small error is described as being 
accurate. If a set of repeated measurements of the same quantity has an 
average which is close to the ‘true’ value, then it is described as accurate, even 
if individual readings are not.

■ In scientific research ‘true’ values will not usually be known and this means
that the errors are also unknown. The accuracy of results may then be
judged partly from the uncertainty in measurements.

■ Accuracy and precision should not be confused with each other. It is possible
for measurements to be precise but not accurate (or accurate but not precise).
The difference is represented in Figure 1.2. Good experimental results are
both accurate and precise.

not precise
not accurate

precise
not accurate

not precise
accurate

precise
accurate

Figure 1.2

Key concepts 
An error occurs in a measurement 
when it is not exactly the same as 
the ‘true’ value.

A single measurement which has 
only a small error is described as 
being accurate.

The uncertainty of a measurement 
is the range of values within which 
we would expect any repeated 
readings to occur. 

A measurement is described as 
precise if a similar result would 
be obtained if the measurement 
was repeated. Readings with small 
(random) uncertainties are precise.
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Random and systematic errors 
■ Random errors occur in all experiments for a variety of different reasons, but

especially because of the limitations of the apparatus being used. Random errors
result in measurements which are scattered (randomly) around the ‘true’ value.

■ If the same error occurs in every measurement made using the same
instrument and technique, it is called a systematic error. For example, this
may be because a measuring instrument has a zero offset error. Figure 1.3
shows a zero offset error on a disconnected voltmeter.

 Explaining how random and systematic errors can 
be identified and reduced 

■ The curved line in Figure 1.4 shows how the theoretical time for an object to
reach the floor varies when it is dropped from different heights.

■ In an actual experiment (with heavy steel spheres), student A measured the
times for a height of 1.0 m. These results show accuracy because the errors are
small (they are close to the theoretical value), and they are precise (repeated
results are close to each other). Because the results are scattered around the
‘true’ result, they are described as random errors.

■ The results of student B’s experiment for a height of 1.6 m also show random
variations, and they are precise, but not accurate. All the readings have times
which are too small compared to the theoretical value. There is a systematic
error in all these measurements.

■ The effects of random errors can also be reduced by taking measurements
under different circumstances, so that a graph can be drawn. Drawing a
best-fit line is a way of reducing random errors in patterns of results.

■ Systematic errors are not reduced by simply repeating readings. Sometimes
systematic errors can be identified from the pattern of results. For example,
Figure 1.5 shows the results of an experiment measuring the speed of a
trolley rolling down a hill from rest. The results have produced the expected
straight-line graph, but unexpectedly it does not pass through the origin, so
that a systematic error is probable.

■ If a systematic error is a result of a zero offset error (see above), the measurements
can be adjusted by adding or subtracting the error from all measurements.

Figure 1.5

0 Time

Sp
ee

d
Key concepts 
The effects of random errors can 
be reduced by taking an average of 
repeated measurements. 

Systematic errors result in 
measurements which are always 
too high or too low. They are 
produced by faulty apparatus 
or repeating poor experimental 
technique. Systematic errors can 
often be identified from graphs of 
results.

QUESTIONS TO CHECK UNDERSTANDING
10 The diameter of a ball was measured five times. If the actual diameter was 

19.2 cm, suggest a set of five measurements which could be described as 
accurate but not precise.

11 If the voltmeter shown in Figure 1.3 recorded a voltage of 5.7 V in an 
experiment, what was the true value of the p.d. being measured?

12 Consider the experimental results represented in Figure 1.5. Suggest a 
possible reason why there is a systematic error in the measurements.

13 The melting point of pure ice was measured six times with the same 
thermometer: 0.3 °C, 0.2 °C, 2.1 °C, 0.1 °C, 0.2 °C, 0.1 °C. Discuss the errors 
in these measurements.

0

1
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V

Figure 1.3
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Figure 1.4

Uncertainties 
■ All experimental and observational data should have their uncertainties made

clear to the reader, although this is often omitted for the sake of brevity and
simplicity.
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QUESTIONS TO CHECK UNDERSTANDING
14 The thickness of 80 sheets of paper was measured to be 0.93 cm.

a If the smallest division on the measuring instrument was 0.1 mm, what 
was the percentage uncertainty in the measurement?

b What was the thickness of one sheet and its absolute uncertainty? 

15 A time measurement was recorded as 4.32 s ± 2%. Calculate:

a the fractional uncertainty

b the absolute uncertainty.

16 Standard laboratory 100 g masses were weighed on an electronic balance and 
their masses were found to be 99.5 g, 100.1 g, 99.7 g, 100.0 g and 100.2 g.

a What was i the maximum absolute uncertainty in the nominal mass,  
ii the percentage uncertainty in nominal mass?

b Determine the average mass.

c Suggest how the manufacturers should describe their masses. 

 Collecting data that include absolute and/or 
fractional uncertainties and stating these as an 
uncertainty range (expressed as: best estimate ± 
uncertainty range) 

■ Values for experimental uncertainty depend on the smallest division of the
scale of the measuring instrument and any limitations of the apparatus or
experimental techniques being used. For example, the precision produced
by an electronic stopwatch should be good, but when used by hand, the
uncertainty in the results may be large because of the problems of starting
and stopping the stopwatch at the right instants.

■ Determining the uncertainty of a measurement often involves considering the
pattern of results from repeated measurements, but it is common to see the
uncertainty of a single measurement quoted, equal to the smallest division of
the scale of the measuring instrument.

 The number of significant figures used in data should represent their 
uncertainty (precision), but not necessarily their accuracy. For example, a 
result of 2.792 appears to be more precise and less uncertain than a result of 
2.8 (but it could be wrong).

■ If a measurement is stated to be, for example, 5.83 (rather than 5.8 or 5.831)
and no uncertainty is given, it suggests that the uncertainty may be 0.01.

 Absolute, fractional and percentage uncertainties 
■ A length measurement may be recorded as 4.3 cm ± 0.1 cm, meaning that

repeated measurements would be expected to fall within the range 4.2–4.4 cm,
with an average of 4.3 cm.

■ Sometimes it may be appropriate to express uncertainties as fractional
uncertainties or percentage uncertainties. For example if a current was measured
to be 3.62 A ± 0.2 A, the fractional uncertainty is 0.2

3.62
 = 0.055, which is 

equivalent to 5.5%.
 Uncertainties in trigonometric or logarithmic functions are not required in the 

IB Physics course.

Key concepts
Uncertainties are usually quoted 
as absolute uncertainties in the 
unit of measurement, with one 
significant digit.

Fractional uncertainties  
(or percentage uncertainties) 
are usually needed when 
propagating uncertainties through 
calculations. 

 Propagating uncertainties through calculations 
involving addition, subtraction, multiplication, 
division and raising to a power

■ In general, a calculated result should not have more significant figures than
the least precise data used in the calculation. For example: a power could be

calculated from P = mgh
t

 = 
(5.1 × 9.81 × 0.176)

4.79
 = 1.838299791 W, using all

the figures displayed on the calculator. However, the value 5.1, having two 
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significant figures, is the least precise measurement used, so the calculated 
answer should also have only two significant figures (1.8 W).

■ When making calculations based on experimental measurements (raw data) 
with known uncertainties, we need to know how to propagate (transfer) those 
uncertainties through to the final answer.

■ Addition and subtraction of similar quantities: the absolute uncertainties are 
simply added: If y = a ± b, then the uncertainty in y, Δ y = Δ a + Δ b.

 For example, if a = 3.8 cm ± 0.1 cm and b = 12.3 cm ± 0.5 cm, then the 
uncertainty in (a + b) or (a − b) is ±(0.1 + 0.5) = ±0.6. y = a + b =  
16.1 ± 0.6 cm or y = b − a = 8.5 ± 0.6 cm.

■ Multiplication or division of various quantities: The fractional (or 
percentage) uncertainties are added to determine the fractional (or percentage) 
uncertainty in the result: If y = 

ab
c , then the fractional uncertainty in y,  

Δy
y  = 

Δa
a  + 

Δb
b  + 

Δc
c .

 For example, if resistance R = ρ L
A  with ρ = (2.83 ± 0.01) × 10–8 m,  

L = 0.98 ± 0.01 m and A = (6.78 ± 0.05) × 10–7 m2. The fractional 
uncertainty in R is equal to the sum of the other three uncertainties: 
0.0035 + 0.0102 + 0.0074 = ±0.0211 (or 2.11%).

 Usually the fractional uncertainty in a calculated answer will be converted 
back to an absolute uncertainty. In the previous example the resistance 
can be calculated to be 0.04090560472Ω (using all the digits from the 
calculator display). Using three significant figures, the absolute uncertainty = 
0.0211 × 0.0409 = ±0.000 863Ω. 

 The length (0.98 m) used in the calculation only has two significant figures 
and this then limits the final result, which can be expressed as 0.041Ω ± 
0.001Ω. Note that the result and the uncertainty have the same number of 
decimal places.

■ Quantities raised to a power: The fractional (or percentage) uncertainty 
in the result equals the fractional uncertainty in the value multiplied by 
the power:  
If: y = an, then 

Δy
y  = |

nΔa
a | (The modulus symbol is needed because a 

power could be negative.) 
 For example, if y = a3, and the fractional uncertainty in a is 0.06 (6%), then 

the fractional uncertainty in a calculated value of y is 
Δy
y  = 3 × 0.06 = ±0.18 

(18%) (the same as when using the rule for a × a × a).
 If y = √a (= a½) and the fractional uncertainty in a is 0.12 (12%), then the 

fractional uncertainty in a calculated value of y is ±0.06 (6%).

QUESTIONS TO CHECK UNDERSTANDING
17 What is the overall uncertainty in mass when masses of 2.5 kg ± 0.05 kg and 

900 g ± 10 g are used together in an experiment?

18 The specific heat capacity of a metal can be calculated from c = 
Q

m∆T.

 Determine a value for c and its absolute uncertainty if Q = 5.4 × 103 J ± 9.2 × 
102 J; m = 1.000 kg ± 0.005 kg; ∆T = 19 K ± 0.5 K.

19 The volume of a cube was measured to be 3.0 ± 0.5 cm3. What was the 
length of one side and its absolute uncertainty?

20 The time period of a mass-spring oscillating system can be calculated from 

 T = 2π
m
k . Calculate a value and uncertainty for T when m = 240 g ± 5 g 

 and k = 120 N m−1 ± 2 N m−1.

21 Explain why the percentage uncertainty of measurements often decreases 
with larger values.

Key concepts 
The uncertainties in results of 
calculations involving additions 
and/or subtractions are determined 
by adding absolute uncertainties.

The uncertainties in results 
of calculations involving 
multiplications and/or divisions are 
determined by adding fractional 
uncertainties.
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Representing uncertainties on graphs 
■ Most physics investigations involve identifying two variables, and observing 

how they are inter-connected. The results are then plotted on a graph so 
that any pattern can be seen and conclusions can be reached. Figure 1.6 
shows an example representing data about the motion of a train.

■ Looking at this pattern of measurements, it seems obvious that there were 
uncertainties in the measurements, but there is no way of knowing from 
Figure 1.6 how large they were.

 Error bars 
■ Absolute uncertainties in measurements are represented on graphs by error 

bars (perhaps they would be better called ‘uncertainty bars’). Figure 1.7 
shows the same data as Figure 1.6, but with error bars included. A best-fit 
line has been drawn which passes through all the rectangles formed by the 
error bars. A best-fit line like this is a way of reducing uncertainties in a 
pattern of results.

■ The error bars for a certain quantity may all be the same, or they can 
sometimes vary in length. Sometimes uncertainties are too small to be 
represented by error bars. 

Obtaining information from graphs 
■ Gradients and intercepts of best-fit graphs can provide important information. 

Figure 1.8 shows a simple example: a best-fit straight line representing the 
variation of the total mass of a beaker and water as the volume of water was 
increased from 50 cm3 to 150 cm3.
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Figure 1.8

 Uncertainty of gradient and intercepts 
■ A line midway between the lines of maximum and minimum gradient is often, 

but not always, the line of best fit, from which best estimates of the gradient 
and intercept can be determined. Figure 1.9 shows an example in which, for 
simplicity, the error bars are not shown. 
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Key concept
Error bars are vertical and horizontal lines drawn through data points to 
represent the magnitude of uncertainties.

Key concept
The uncertainty in the values of 
gradients and intercepts calculated 
from straight line graphs can be 
determined by comparing the 
lines of maximum and minimum 
gradient that can pass through the 
error bars with a line of best fit.
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 Determining the uncertainty in gradients and 
intercepts 

QUESTIONS TO CHECK UNDERSTANDING
22 What are the values of the uncertainties shown in Figure 1.7?

23 Give an example of measurements of a quantity in an experiment which 
have variable absolute uncertainties. Explain your answer.

24 Consider Figure 1.9.

a Estimate the gradient of the best-fit line and its uncertainty.

b Estimate the intercept on the time axis and its uncertainty.

NATURE OF SCIENCE

 Uncertainties
Apart from the uncertainty in all measurements, to some extent all scientific 
knowledge should also be considered as uncertain. Scientists understand that 
there is always the possibility (perhaps small) that what is accepted knowledge 
today may later be found to be wrong, or a simplification of a more fundamental 
principle. To many, this uncertainty is a motivation and a challenge. 

1.3 Vectors and scalars
Essential idea: Some quantities have direction and magnitude, others have 
magnitude only, and this understanding is the key to correct manipulation of 
quantities. This sub-topic will have broad applications across multiple fields within 
physics and other sciences.

Vector and scalar quantities 
■ The size of any quantity is often called its magnitude.
■ A vector quantity is represented in a diagram by a straight line in the 

correct direction, with a length proportional to the magnitude. 
■ A vector −P has the same magnitude as the vector +P, but in the opposite 

direction.
■ Examples of vectors include force, momentum and gravitational field 

strength.
■ Examples of scalar quantities include mass, energy and time.
■ If a vector, P, is multiplied or divided by a scalar, k, the result is simply kP 

or P/k.

Key concepts
A vector is a quantity that has 
both magnitude and direction.

A scalar is a quantity that has 
only magnitude (no direction).
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 Combination and resolution of vectors 

A

B

resultant force

140�

Figure 1.10

■ If the angle between two vectors is 90°, the resultant can be determined 
algebraically.

■ The difference between two vectors can be determined by adding the first to 
the negative of the second, as shown in Figure 1.11.

a

B

A

A � B � ?

   

b

�B

A

A � B

Figure 1.11

■ Sometimes a single vector does not act in a direction which is convenient for 
analysis. If so, the vector can be resolved into two components.

■ The two components can then be considered separately and 
independently. Figure 1.12 is similar to a figure in the IB Physics data 
booklet. The two perpendicular components (vertical and horizontal in this 
example) of vector A are AH = A cos θ and AV = A sin θ.

 Solving vector problems graphically and algebraically 

Key concept
The resultant of adding two 
vectors can be determined in 
magnitude and direction from the 
diagonal of a parallelogram drawn 
to scale, as shown by the example 
of two forces in Figure 1.10.

Key concept
For convenience, a single 
vector can be  resolved into two 
components at right angles to each 
other. The two components, acting 
together, would have the same 
effect as the original vector.

QUESTIONS TO CHECK UNDERSTANDING
25 List two vectors and two scalars (which are not mentioned above).

26 If the force to the right in Figure 1.11 is 20 N, determine the magnitude and 
direction of the resultant force.

27 Calculate the resultant of these two velocities: A = 24 m s−1 to the south and 
B = 15 m s−1 to the east.

28 What is the mathematical difference between the two vectors (A − B) in the 
previous question?

29 A rope is used to pull a large box across a horizontal floor. The rope is 
pulled with a force of 247 N at an angle of 25° to the horizontal. Determine 
the vertical and horizontal components of this force.

A

θ

vertical
component
AV = A sin θ

horizontal component
AH = A cos θ

Figure 1.12

NATURE OF SCIENCE

 Models
Many quantities in physics need to be described by their direction (often in three 
dimensional space), as well as their magnitude. A branch of mathematics had to 
be developed to deal with these quantities and how they combine with each other: 
the mathematical modelling of vectors.
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2.1 Motion
Essential idea: Motion may be described and analysed by the use of graphs and 
equations.

Distance and displacement 
■ Distance, s, means the length between two points. Depending on the 

circumstances, a quoted distance may be in a straight line or along a path of 
changing direction (unit: m). Distance is a scalar quantity.

■ Figure 2.1 shows the path followed by some people walking around a park. 
The total distance was several kilometres, but the walk finished back at the 
starting point. The arrows represent the displacement from the starting point 
at various times. The final displacement was zero.

a

b

c

d

e

start and
end here

Figure 2.1

■ Displacements (and other vectors) which are in opposite directions are often 
represented, especially on graphs, by positive and negative signs.

Speed and velocity 
■ Velocity may be considered as speed in a given direction.
■ Speed is a scalar quantity; velocity is a vector quantity. 

2 

Key concept
Displacement is a vector quantity 
defined as the distance in a straight 
line from a reference point in a 
specified direction. 

Key concepts
Speed, v, is defined as the rate of 
change of distance with time.  
v = Δs

Δt (unit: m s–1). 

Velocity, v, is defined as the rate 
of change of displacement with 
time. v = Δs

Δt (unit: m s–1). 

Common mistakes

Physicists generally prefer to refer to the more precise terms of displacement 
and velocity, rather than distance and speed, but it is easy to confuse distance 
with displacement, and speed with velocity. This is sometimes because the 
direction involved is implied (rather than stated explicitly) and does not change. 
For example, it may be stated simply that a car has a velocity of 15 m s–1, with the 
assumption that it is travelling in a straight line along a (given) road at a constant 
speed. However, if there is a reference in a question to the interaction of a 
moving object with other objects or forces, the vector natures of displacement, 
velocity, force and acceleration must be considered.
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Acceleration 
■ Any object that is changing the way it is moving (changing its velocity) is 

accelerating. This includes going faster, going slower and/or changing direction. 
■ An increasing velocity is known as a positive acceleration. A decreasing 

velocity is called a negative acceleration, or deceleration.

Key concept
Acceleration, a, is defined as the 
rate of change of velocity with 
time. a = Δv

Δt = (v – u)
t  (unit: m s–2).Determining instantaneous 

and average values for velocity, 
speed and acceleration 
■ When we calculate an acceleration from a change of velocity/time, we are 

determining the average value acceleration during that time. However, in 
physics we are usually more concerned with the precise values of quantities 
such as speed, velocity and acceleration at an exact instant. These are called 
instantaneous values (rather than average values) and they can be 
calculated from measurements made over very short intervals of time, or from 
the gradients of graphs (see below).

QUESTIONS TO CHECK UNDERSTANDING 
1 X has a displacement of 520 km north of Y. 

a Estimate the road distance that a car might need to travel to go from Y to X. 

b A plane takes 45 minutes to fly in a straight line from X to Y. What was 
its average velocity?

2 Imagine you take a bicycle ride from your home and return one hour later. 
Explain why it would be pointless to state a value for your average velocity.

3 The velocity of object travelling at 10 m s–1 west changes to 6 m s–1 south. 

a What is the magnitude of the change of velocity? 

b If the velocity then changes again to 6 m s–1 north, what is the 
magnitude of the second change of velocity?

4 A runner completes a 200 m race along a partly curved track in an athletics 
stadium in a time of 22.4 s. 

a What was the average speed? 

b Explain why the greatest instantaneous speed must have been greater 
than your answer to part a. 

c Would the magnitude of the average velocity be greater than, less than, 
or the same as your answer to part a? Explain.

Graphs describing motion 
■ We are mostly concerned with displacement–time, velocity–time and, less 

often, acceleration–time graphs.

 Sketching and interpreting motion (s–t) graphs 
■ In Figure 2.2, between points A and B an object is moving away from a 
 reference point with a constant velocity Δs

Δt (( . Between points B and C the 
 object is moving back towards the reference point with a slower constant 

velocity. The motion between points D and E represents an object with an 
even lower constant velocity moving away from the reference point, but in 
the opposite direction.

■ If a speed is changing then the displacement–time graph is curved and 
gradients of tangents to the curve at any points represent the instantaneous 
speeds/velocities at those times.

■ In Figure 2.3 the curve A represents an object moving away from a reference 
point with an increasing velocity (positive acceleration), the magnitude of 
which at any time (for example, t1) may be determined from the gradient of 
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the tangent at that time Δs
Δt (( . The curve B represents an object moving in 

the opposite direction with a decreasing velocity (negative acceleration).
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Expert tip

When determining the gradient 
of any graph, greater accuracy is 
obtained by using larger triangles. It 
is often convenient to extend lines to 
the axes, and triangles should always 
cover at least half the available range 
of the graph.

 Sketching and interpreting motion (v–t) graphs
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■ Figure 2.4 represents a constant acceleration Δv
Δt (( . In this example a = 1.0 m s−2. The 

distance travelled between the fourth and ninth seconds can be determined 
from the shaded area (= 48 m to 2 sig. fig.)

■ The black curved line in Figure 2.5 represents an object that is moving away 
from a reference point with a decreasing variable velocity. The magnitude 
of the acceleration at any time (like t1) can be found from the gradient of a 
tangent to the curve (shown in red) at that time Δv

Δt (( . The object eventually 
stops moving and the total distance travelled can be determined from the 
shaded area under the graph.

Key concept
The gradient of any distance–
time graph represents speed. The 
gradient of a displacement–time 
graph represents velocity (in 
either of two opposite directions, 
for example up or down, or left 
or right).

Key concepts
The gradient of a speed–time 
graph represents the magnitude of 
the acceleration. The gradient of 
a velocity–time graph represents 
acceleration (in magnitude and in 
either of two directions).

The areas under speed–time or 
velocity–time graphs represent the 
change of distance or displacement  
that occurred with the chosen 
time interval. 
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Figure 2.5

Expert tips

The units of the area under any 
graph are determined by multiplying 
together the units used on the two 
scales. For example m s−1 × s has the 
unit of distance: m.

The simplest way to estimate the 
area under a curve is to determine 
the area of a regular geometric shape 
(rectangle or triangle) that has the 
same area (as judged by eye). 
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■ One common kind of motion is that of objects moving under the effects of 
gravity. If air resistance is negligible (sometimes called free-fall), all masses moving 
in any direction close to the Earth’s surface accelerate downwards at the same rate. 
This acceleration is given the symbol g, and its standard value is g = 9.81 m s–2.

■ Figure 2.6 shows a velocity–time graph for an object in free-fall from rest above 
the Earth’s surface.

QUESTIONS TO CHECK UNDERSTANDING 
5 A car accelerates from rest at a uniform rate along a straight road. After 

5.0 s its speed becomes a constant 8.0 m s−1. After a further 10.0 s it begins 
to slow down. The rate of deceleration becomes less and less, and it finally 
stops 25.0 s after starting. 

a Sketch speed–time and distance–time graphs to represent this motion. 

b What was the car’s initial acceleration? 

c How far did the car travel in the first 15.0 s?

6 Figure 2.7 shows a displacement–time graph for a train moving along a 
straight track. After 4 s the train passes through a station without stopping. 

a What was the initial velocity of the train? 

b What was the train’s velocity after 6 s? 

c Make a copy of the graph and add a line to represent a train travelling in 
the opposite direction at half the speed of the first train (the trains pass 
at the station). 
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7 Figure 2.8 shows how the velocity of a falling object changed over a time of 5.0 s. 

a Describe the motion. 

b Determine the acceleration after 3.0 s. 

c Estimate how far the object fell from rest in 5.0 s.
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8 a Sketch a velocity–time graph for two oscillations of a swinging pendulum. 

b Show on your sketch an area which is equal to the amplitude of the swing.

9 Sketch a displacement–time graph for a ball dropped onto the ground, 
which then bounces up to two-thirds of the original height.

Key concept
The change of velocity that occurs 
in a certain time interval can be 
determined from the area under an 
acceleration–time graph.
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Equations of motion for 
uniform acceleration 
■ The simplest kind of motion to study is that of objects moving with 

uniform acceleration. The symbol u is used for the velocity at the start 
of observation, and the symbol v for the velocity after time t. Problems 
can be solved using the following equations of motion for uniformly 
accelerated motion. 

■ The first two equations are just definitions of acceleration and average 
velocity. The second two equations are mathematical combinations of 
the first two.

 v = u + at 

 s = 
( + )

2
v u t

 v 2 = u2 + 2as
 s = ut + 12 at2

Expert tips

It should be stressed that the equations of motion can only be used for time 
periods in which the accelerations remain constant. If a motion consists of two or 
more sections (each with its own constant acceleration), then each section must 
be considered separately.

Displacement, velocity and acceleration are all vectors, such that positive and 
negative signs may be used to represent opposite directions. For example, for 
an object projected vertically upwards, if the displacement is considered to be 
positive and increasing, while the velocity is positive and decreasing, then the 
acceleration (downwards) remains constant but negative.

 Solving problems using equations of motion for 
uniform acceleration 

QUESTIONS TO CHECK UNDERSTANDING 
10 A car travelling at 13 m s−1 accelerates uniformly to 24 m s−1 in 4.6 s.

a What was the average speed during this time?

b How far did the car travel in the 4.6 s?

c The car then braked with constant deceleration to stop after another 
5.9 s. How far did it travel during this time?

11 A heavy sphere was dropped from rest from a height of 2.32 m. 

a What was its speed when it reached the ground?

b What assumption did you make? 

12 A ball is thrown vertically upwards from a height of 2.0 m with a speed of 18 m s−1. 

a Assuming that air resistance is negligible, what is its position after 3.0 s? 

b What is its velocity at the same moment?

13 Explain why the equations of motion cannot be used (on their own) to 
determine the speed with which a steel sphere falling through water from 
the surface reaches the bottom of its container.

Key concept
Given any three of the unknowns 
u, v, a, s, t it is possible to use the 
equations of motion to determine 
the other two.
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 Determining the acceleration of free-fall 
experimentally 

■ If the time that a dense object takes to fall a short distance from rest can be 
measured accurately, then the equations of motion can be used to determine a 
value for the acceleration of free-fall due to gravity.

QUESTIONS TO CHECK UNDERSTANDING 
14 a Explain why it was suggested that the object used in the acceleration of 

free-fall experiment should be ‘dense’. 

b List one advantage and one disadvantage of using greater distances for 
the object to fall in this experiment. 

c Outline a laboratory experiment to determine the acceleration due to gravity.

15 An object falls a distance of 76.2 cm ± 0.2 cm from rest in 0.40 s ± 0.01 s. 
What value do these results give for ‘g’ (include the absolute uncertainty)?

Fluid resistance and terminal speed 
■ The motion of objects through the air is opposed by the force of air resistance. 

Similar forces arise when any object moves in any direction through any fluid 
and generally such forces are described as fluid resistance or drag.

■ Fluid resistance arises because the fluid has to be pushed out of the path of the 
moving object.

■ An object which is able to move through a fluid with low resistance may be 
described as streamlined.

■ The forces acting on an object falling thorough air are shown in Figure 2.16 in 
Section 2.2. Similar comments can be applied to the motion of objects moving 
through all fluids, including liquids.

■ The skydivers in Figure 2.9a have reached their terminal speed.

Key concept
The amount of fluid resistance acting  on any moving object  depends on its 
speed, its cross-sectional area and its shape.

When fluid resistance becomes equal and opposite to the weight, a falling 
object will reach a constant, terminal speed.

Projectile motion 
■ Any unpowered object moving through the air will follow a trajectory 

(path) affected by the strength of the gravitational field and (if significant) air 
resistance. Such objects are often called projectiles. 

 Analysing projectile motion, including the 
resolution of vertical and horizontal components of 
acceleration, velocity and displacement 

■ We know from Section 1.3 that the instantaneous velocity of any projectile can 
be resolved into vertical and horizontal components (vV = v sin θ, vH = v cos θ). 
See Figure 2.9b. 

velocity of
projectile, v

horizontal
component
of velocity

vH = v cos θ

vertical
component
of velocity
vV = v sin θ

θ

Figure 2.9b

Key concept
Because these components of 
velocity are perpendicular to each 
other, they can be considered 
independently. The fact that they 
do not affect each other is very 
useful.

Figure 2.9a
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■ The downwards component of velocity of an object projected horizontally 
will be exactly the same as for an object dropped vertically from the same 
height at the same time (assuming negligible air resistance). See Figure 2.10.

initial horizontal velocity

object
projected

horizontally

object dropped
vertically

Figure 2.10

■ Projectiles move in parabolic paths if air resistance is negligible because 
the horizontal component of velocity remains constant and combines with a 
constant vertical acceleration.

■ The equations of motion and the conservation of energy (gravitational 
potential energy to or from kinetic energy) can be used with the vertical 
and horizontal components to predict the exact motion of a freely 
moving projectile. Numerical questions will assume air resistance is 
negligible.

Expert tip

The first steps in most projectile 
calculations is to use the initial vertical 
component of velocity to determine 
the time taken before the projectile 
reaches the ground.

 Qualitatively describing the effect of fluid resistance 
on falling objects or projectiles, including reaching 
terminal speed 

■ Air resistance is not usually negligible and Figure 2.11 shows its typical effects 
on a projectile. 

 A falling object (like the skydivers in Fig 2.9a) will reach a constant, terminal 
speed.

without air
resistance

with air
resistance

Figure 2.11

■ The effects of air resistance on objects falling vertically has already been 
discussed.

Key concept
Air resistance reduces speeds, 
heights and ranges, so that the 
trajectories will not be perfectly 
parabolic.

QUESTIONS TO CHECK UNDERSTANDING 
16 A stone was thrown horizontally from a height of 1.25 m with a speed of 

18 m s−1. Assuming negligible air resistance, determine:

a the time before it reached the ground,

b the horizontal distance travelled before impact with the ground.
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17 An air rifle at ground level fired a pellet at an angle of 20° above the 
horizontal. If the pellet left the rifle with a speed of 175 m s−1 determine the 
range of the pellet (the horizontal distance to the point where it impacts the 
ground). Assume negligible air resistance.

18 Sketch possible displacement–time and velocity–time (0–5 s) graphs for an 
object dropped from rest which reaches its terminal speed after 3 s. Label 
the vertical scales with suggested values.

NATURE OF SCIENCE

 Observations
Science is based on observations of the natural world and experiments. 
Detailed observations of various kinds of motion by scientists such as Galileo, 
Newton and others, started in the sixteenth and seventeenth centuries. These 
observations and experiments were essential for the development of many 
fundamental concepts in physics and science.

2.2 Forces
Essential idea: Classical physics requires a force to change a state of motion, as 
suggested by Newton in his laws of motion.

The effects of forces 
■ Forces can change the motion or shapes of objects. More specifically, 

resultant unbalanced forces change velocities.

 Objects as point particles 
■ When considering the action of forces on various objects, in order to avoid 

complications, it may be convenient to assume that all of the mass of an object 
is effectively concentrated at one point, which is often assumed to be located 
at the centre of a regularly shaped object.

 Representing forces as vectors 
■ Force is a vector quantity and as such can be represented in a drawing by an 

arrow pointing in the right direction to, or from, the point of application. The 
length of the arrow should be proportional to the magnitude of the force.

■ Force is given the symbol F and it has the unit newton, N (explained later).
■ Figure 2.12 shows vector arrows representing the weights of two different 

people. The arrows have different lengths and point downwards from the 
centres of mass of the people.

■ Common types of contact forces include reaction forces, tension, 
compression, friction, fluid resistance (drag), and upthrust. 

Key concepts
Resultant forces cause accelerations.

It is often convenient to visualize 
that all of the mass of an object is at 
one point called its centre of mass.

mass 65 kg

weight, 650N weight, 150N

mass
15 kg

Figure 2.12

Expert tip

When anything is pushed or pulled, the object pushes (or pulls) back, as 
described by Newton’s third law (see below). This is called a reaction force and it 
is always perpendicular (normal) to the surface.

■ Non-contact forces are a very important part of the study of physics: 
gravitational, electrical, magnetic and nuclear (strong and weak) 
forces are all studied in this course.

■ The force of gravity pulling a mass towards a planet is called its weight. A 
vector representing weight is usually drawn acting downwards from the centre 
of an object (as shown in Figure 2.12).

 Weight can be calculated from mg, because, from Newton’s second law 
(see below), force (of weight) = mass × acceleration. 

■ Also note that g may be expressed as the ratio of weight to mass. Written in this 
way g is known as the gravitational field strength and it has an accepted 
standard value, g = 9.81 N kg−1 anywhere on or close to the Earth’s surface. 

Key concept
The weight of an object is a 
gravitational force measured in 
newtons. It depends on the mass of 
the object and the strength of the 
gravitational field, g, in which it is 
located: weight = mg.
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Expert tip

From Newton’s third law (see below), 
we know that all forces occur in pairs, 
but each force of the pair acts on a 
different object. The use of free-
body diagrams avoids the confusion 
of showing force pairs on the same 
drawing.

Free-body diagrams 
■ Free-body diagrams show all the forces acting on one object, but without 

showing other objects and the surroundings. It may be convenient to reduce 
the object to a point (as described above). 

■ Figure 2.13 shows a simple free-body diagram of the two forces acting on a 
swinging pendulum.

 Sketching and interpreting free-body diagrams 
■ Examples occur throughout the course

QUESTIONS TO CHECK UNDERSTANDING 
19 A 2.5 kg box is at rest on a slope which has an angle of 30° to the 

horizontal. There are three forces acting on the box. Represent these forces 
in a labelled free-body diagram of the box.

20 The gravitational field strength on Mars is 3.8 N kg−1. 

a What would be the weight of a 620 g basketball on Mars? 

b What would be its acceleration if the ball was allowed to fall freely?

Solving problems involving forces 
and determining resultant force 
■ When more than one force acts on an object we often need to determine 

the overall effect. As an example, consider Figure 2.13. It would be very 
useful to know the value of the single force which would have the same 
effect as the actual forces combined. This is known as the resultant force. 
It is sometimes described as an unbalanced force (assuming it is not zero).

■ If three forces are in equilibrium, the resultant of any two forces is equal in 
magnitude and opposite in direction to the third force.

■ The effects of two perpendicular components can be considered 
independently. Taking components can be useful if a force acts on an object 
at an inconvenient angle, such that we may prefer to know its effects in other 
directions (most commonly vertical and horizontal).

A swinging pendulum

weight

tension

Figure 2.13

QUESTIONS TO CHECK UNDERSTANDING 
21 a If in Figure 2.13 the mass of the pendulum was 68 g, what was its weight? 

b Use a scale drawing to determine the resultant force if the tension was 
0.563 N and the angle between weight and tension was 145°.

22 By taking components, determine the magnitude of the frictional force which 
is stopping the box in question 19 from slipping down the slope.

Key concept
The resultant of two or more forces 
can be found using vector addition 
(see Section 1.3).

A single force, F, can be resolved 
into two components at right angles 
to each other: F cos θ and F sin θ.

Solid friction 
■ Solid friction is a force which opposes motion between surfaces in contact. 

The amount of friction between two surfaces depends on the nature and 
roughness of the surfaces, and the normal force acting between them. It should 
be noted that, in reality, frictional forces can be unpredictable.

■ Figure 2.14a shows a block and masses being pulled to the right across the 
surface of a table. A pair of frictional forces will occur on the surfaces of the 
block and the table.

■ Figure 2.14b is a free-body diagram of the block, which has been simplified 
to a point object. The block will accelerate to the right because there is a 
resultant horizontal force. If more masses are added the frictional forces will 
increase.

Figure 2.14

pull

a

weight

friction pull

reactionb
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 Describing solid friction (static and dynamic) by 
coefficients of friction

■ We need to distinguish between the frictions that occur before and after 
motion begins. Before any movement occurs, we refer to static friction. The 
magnitude of a static frictional force varies up to an upper limit, just before 
motion begins.

■ Ff ≤ μsR, where μs is the coefficient of static friction.
 After motion has started the friction is called dynamic friction. The 

coefficient of dynamic friction is usually less than for static friction.
 Ff = μdR where μd is the coefficient of dynamic friction. Dynamic friction may 

be assumed to be independent of speed.
■ A common method for determining a coefficient of static friction involves 

placing an object on an inclined plane and increasing the angle, θ, until the 
object just begins to slip. At that point μs = tan θ.

Key concept
The coefficient of friction, μ, is 
equal to the ratio: 
frictional force, Ff

normal force, R
 .

Newton’s laws of motion: 1 
■ If a resultant force acts on an object, it will accelerate.

 Translational equilibrium 
■ Translational means moving from place to place. The motion of an object in 

equilibrium is unchanging.
■ An object in translational equilibrium may be at rest (stationary), or moving in a 

straight line at a constant speed (constant velocity).

QUESTIONS TO CHECK UNDERSTANDING 
23 Consider Figure 2.14b.

a If the total weight was 18 N and the frictional force was 16 N, what was 
the coefficient of friction? 

b What kind of friction does this coefficient describe? 

c Describe what would happen if the weight was increased. 

24 a A 1.2 kg wooden block was resting on an adjustable wooden sloping 
surface and the angle to the horizontal slowly increased. If the 
coefficient of static friction between the two surfaces was 0.73, calculate 
the angle at which the block just begins to slide down the slope. 

b Suggest any method by which the amount of friction between the 
surfaces could be reduced.

Key concepts
Newton’s first law of motion 
states that an object will remain 
at rest, or continue to move in a 
straight line at a constant speed, 
unless a resultant force acts on it.

An object is in translational 
equilibrium if there is no 
acceleration.

 Describing the consequences of Newton’s first law 
for translational equilibrium 

■ Newton’s first law may be rephrased as: an object will remain in translational 
equilibrium unless a resultant force acts on it.

■ All objects on Earth are affected by gravity and all moving objects are affected 
by frictional forces. Therefore we may assume that any object in translational 
equilibrium (including those at rest) cannot have zero forces acting on it: it 
must have one or more pairs of equal and opposite forces acting on it. Such 
pairs of forces cannot be ‘force pairs in the context of Newton’s third law’ 
(see below) because they act on the same object. 

Expert tip

It is possible that an object could be 
in translational equilibrium but not in 
rotational equilibrium, or vice versa.
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■ The motion of objects falling through fluids (air in particular), has already 
been mentioned (Section 2.1). Figure 2.16 (b and c) shows how the two forces 
acting on a falling sphere vary as it accelerates from rest (Figure 2.16a).

■ The air resistance increases as the sphere moves faster, until it becomes equal 
and opposite to weight, as shown in Figure 2.16c. The object then falls at a 
constant, terminal speed.

■ All objects accelerating horizontally have a maximum speed for similar 
reasons: as they move faster, resistive forces increase. Eventually the resistive 
forces become equal to the forward force (assumed to have a limit), so that the 
resultant force and acceleration reduce to zero.

QUESTIONS TO CHECK UNDERSTANDING 
25 The Moon moves at approximately constant speed in orbit around the 

Earth. Is it in translational equilibrium? Explain.

26 Sketch a free-body diagram for a skydiver one second after they have 
jumped from a plane.

27 Describe two different ways in which a designer could increase the top 
speed of a car.

Newton’s laws of motion: 2 
■ Greater masses accelerate less than smaller masses when the same (resultant) 

force acts on them.
■ Acceleration is proportional to resultant force (for a constant mass) and 

inversely proportional to mass (for a constant force).
■ One newton (N) is defined as that (resultant) force which accelerates 1 kg 

by 1 m s−2.
■ (Using the concept of momentum from Section 2.4, Newton’s second law 

can be expressed in another, more generalised, way which does not assume a 
constant mass: F = Δp

Δt.)

Key concepts
Mass is the property of matter 
that resists acceleration when a 
(resultant) force acts.

Newton’s second law 
establishes a mathematical 
connection between (resultant) 
force, mass and acceleration: 
F = ma.

 Using Newton’s second law quantitatively and 
qualitatively 

■ Once a resultant force has been identified, the equation F = ma can be used 
to determine the accelerations or decelerations produced on various objects if 
their mass is known. Such calculations are sometimes combined with the use 
of the equations of motion.

Key concept
Moving objects will reach a 
terminal speed when their speed 
has increased to a value such that 
fluid resistance has become equal 
and opposite to the force in the 
direction of motion.

weight

weight air
resistance

air
resistance

weight

a b c

Figure 2.16

■ Figure 2.15 represents a free-body diagram of a car in translational 
equilibrium, moving to the left with a constant velocity. There are two pairs 
of forces maintaining equilibrium. Note how representing the car as a point 
object avoids the complications of having to consider exactly how the forces 
are distributed (that would only need to be considered in a more detailed 
analysis).

 
weight of car

reaction of road on tyres

force of road
(friction) on tyres

combined resistive,
frictional forces

Figure 2.15

Key concepts
Any object in translational 
equilibrium will have one or more 
pairs of equal and opposite forces 
acting on it.
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Common mistakes

Many people think that the safest design for a vehicle is one which is strong 
and very rigid. But the design of vehicles like cars involves sections of the vehicle 
which can collapse or crumple when large forces act on them. In this way the 
magnitude of the deceleration during any accident is lessened and the forces 
involved much reduced.

Expert tip

The resistance of an isolated object 
to any change in its motion is known 
as its inertia. The inertia of an object 
depends only upon its mass.

■ More generally, in qualitative terms, it should be clear that larger forces are involved 
with greater accelerations or decelerations (of equal masses). During impacts (for 
example, consider cars colliding or people hitting the ground), any possibly harmful 
forces involved will be reduced if the decelerations are smaller. That is, there is less 
risk of injury if impacts take place over longer times and distances.

Newton’s laws of motion: 3 
■ This law represents the fact that all forces occur in pairs. For example, it is not 

possible to push an object unless it pushes back on you: if it cannot push back 
on you, then you cannot exert a force on it.

■ See Figure 2.17, in which FA = −FB.

Key concept
Newton’s third law states that 
whenever one body exerts a force 
on another body, the second body 
exerts exactly same force on the first 
body, but in the opposite direction.

Expert tip

When you stand still on the floor you may be considered to be in translational 
equilibrium under the action of two forces: your weight downwards and the 
reaction force upwards from the ground on your feet. These are two different 
types of force acting on the same object (you), so they cannot be a Newton’s 
third law pair. Your weight down is paired with the same sized gravitational force 
acting up on the Earth (which has negligible effect). These two forces are present 
even if there is no physical contact.

More precisely, from Chapter 6, your weight down is slightly greater than the 
reaction force upwards, so that there is a small net force acting on you towards 
the centre of the Earth. This provides the centripetal force which keeps you in 
circular motion on the surface of the revolving Earth.

QUESTIONS TO CHECK UNDERSTANDING 
28 a What average deceleration is needed in order for a plane to land on a 

runway in a total distance of 1.5 km if the landing speed is 75 m s−1?

b If the plane has a mass of 1.8 × 105 kg, what average force is needed?

c Suggest how this force is provided.

29 A bus of mass 1.68 × 104 kg is travelling at a constant velocity of 14.3 m s−1. 
The forward force provided by the engine is 8.5 × 103 N. 

a What is the magnitude of the resistive force acting on the bus? 

b What initial acceleration would be produced by increasing the forward 
force to 2.7 × 104 N? 

c Assuming that the resistive force stays constant, what distance is 
travelled by the bus during the next 10 s?

d Explain why, in practice, the resistive force will not be constant.

30 Use Newton’s second law to explain why high jumpers use foam rubber to 
fall onto.

 Identifying force pairs in the context of Newton’s 
third law 

■ The two forces of a Newtons third law force pair always act on different 
objects. Note that the two forces are always of the same type as each other 
(e.g. both gravitational or both frictional). Clearly, Newton’s third law force 
pairs cannot be represented on free-body diagrams because only one object is 
shown on such diagrams.

■ Figure 2.18 shows the gravitational force pair acting on a woman and the Earth.

FB FA

A

point of contact

B

Figure 2.17

gravitational
force of the
woman on the
Earth

gravitational
force of the
Earth on the
woman

Figure 2.18
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■ Newton’s third law can be very useful when explaining the propulsion of 
vehicles. In order to exert a forward force on the vehicle it is necessary to 
create a backwards force on the surroundings. For example, when the tyre 
on a car turns it produces a backwards force on the road surface due to 
friction. This is matched by a forward force from the road onto the tyre. 
Another example is jet propulsion: when a jet engine forces exhaust gases out 
backwards, an equal force is created pushing the plane forward.

■ (In Section 2.4 it is explained that Newton’s third law is equivalent to the law 
of conservation of momentum.)

NATURE OF SCIENCE 

 Using mathematics; intuition
■ The use of mathematics is an essential part of physics, but in the earlier 

development of the subject this was not as evident as it is now. Newton was 
a pioneer in this respect. His second law of motion is an obvious example, 
but he also deserves credit for the invention of calculus, which is essential for 
modern advanced physics.

■ The iconic image of Newton observing an apple falling from a tree neatly 
represents the intuition that inspired his imagination. Newton’s Principia is 
one of the most important scientific publications of all time.

2.3 Work, energy and power
Essential idea: The fundamental concept of energy lays the basis upon which 
much of science is built.

Work done as energy transfer 
■ Work, W, is the name that we give to the very common type of energy 

transfer that occurs when an object is displaced by a force. 
 In the simplest examples, the work done when an object is moved can be 

calculated from: W = Fs, assuming that the force, F, is constant and in the 
same direction as the movement of the object through a distance s. 

■ The unit of work is the joule, J. 1 J is defined as the work done when a force of 
1 N moves a distance of 1 m. The same unit is used with all forms of energy.

■ Consider the equation W = Fs cos θ: If there is no movement, s = 0, so 
that no work is done by a force. If an object is moving perpendicularly to 
a force then cos θ = 0  and the force is not doing any work on the object. 
If the force and movement are in the same direction, cos θ = 1, so that the 
equation becomes W = Fs.

QUESTIONS TO CHECK UNDERSTANDING 
31 The Earth orbits around the Sun because of the force of gravity acting on it. 

Which other force is paired with this?

32 Figure 2.19 shows a drawing pin (thumb tack) squeezed between a person’s 
finger and thumb. 

a Identify the four equally sized forces involved. 

b Suggest why the same force produces different sensations in the finger 
and thumb.

F cos θ

θ

force, F

distance moved, s

Figure 2.20

Key concept
If a constant force and the 
movement it produces are at 
an angle θ to each other (see 
Figure 2.20), the work done can be 
determined from W = Fs cos θ. 

Figure 2.19
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 Determining work done including cases where a 
resistive force acts 

■ If an object is already moving, work may be done to make it move faster, 
gaining kinetic energy. 

■ Or, if there is a resistive force in the opposite direction to the motion (e.g. 
a car braking), the work done will reduce kinetic energy, usually dissipating 
energy into the surroundings as thermal energy.

QUESTIONS TO CHECK UNDERSTANDING
33 a Calculate the work done when a constant force of 150 N is used to push 

a desk 2.0 m across a room. 

b What assumption did you make? 

c After the desk has become stationary, to what form has the energy 
been transferred?

34 A car moving in a straight line with 2.0 × 105 J of kinetic energy is brought to a 
stop by a constant resistive force of 4.0 × 103 N. What is the stopping distance?

35 Figure 2.21 shows a case being 
pulled across an airport floor with a 
force of 18 N. 

a How much work is done in 
moving the case a horizontal 
distance of 50 m? 

b If the case has a weight of 70 N 
how much work is done lifting 
it vertically 50 cm onto a trolley?

18 N

35°

Figure 2.21

Sketching and interpreting 
force–distance graphs 
■ In most practical situations forces are not constant, so in order to calculate work 

done we need to use an average force. If a force varies in a regular way

determining an average value is not difficult 
F F( )–

2
max min , but many forces are 

less predictable.
■ Force–distance graphs can be used to show how forces vary. As an example, 

Figure 2.22 represents the resultant force acting on a vehicle. During section 
A the vehicle is being accelerated by a constant force. During section B the 
driver uses the brakes and there is a resultant resistive force acting on the 
vehicle, resulting in a deceleration. After that there is no resultant force and 
the vehicle will maintain its translational motion. The work done during A 
and/or B can be determined from the areas under the graphs.

■ Another important type of force–distance graph is used to represent how 
materials behave when they are stretched or compressed. We refer to the resulting 
change of shape as a deformation or strain. Stretching a spring provides the 
most readily understood example. The work done is transferred to strain energy 
and/or internal energy. (Strain energy is discussed later in this section.) 

■ Figure 2.23 represents the changing length of a spring when it was stretched. 
The work done when the length increased from, for example, 2.2 cm to 2.6 cm 
can be found from the area under the graph.

■ Provided that a spring is not overstretched its extension, Δx, (length – 
original length) is proportional to the force, F (Hooke’s law). 

■ The stiffness of the spring is represented by the gradient of the graph.  
This is often called the force constant, k, of the spring. k = Δ

Δ
F
x

  
(k = 8.0

0.4
 = 20 N cm−1 in the graph in Figure 2.23).
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Expert tip

Because it would usually be considered that a force causes an extension, this graph 
may sometimes be drawn the other way around, with force on the horizontal axis. 
The gradient of a distance–force graph would then have to be interpreted differently. 

Key concept
The area under a force–distance 
graph represents the work done 
within the limits chosen.



2.3 Work, energy and power 25

Different forms of energy 
■ Energy exists in different forms. Stored energy is very useful and is called 

potential energy. 
 Gravitational, elastic strain, chemical, electric, magnetic and nuclear 

are all examples of potential energies. Energy is stored because of the forces 
involved in these processes.

 The other important forms of energy discussed in this course are kinetic 
energy, electrical energy, thermal energy, radiant energy, 
(mechanical) wave energy (including sound and water waves), internal 
energy and rest mass energy.

 Mechanical waves are a combination of kinetic energy and potential 
energy (see Chapter 4). 

 Thermal energy flows from place to place because of a difference in 
temperature (see Chapter 3).

 Electrical currents transfer energy from place to place because of a 
difference in potential (see Chapter 5). 

 Electromagnetic radiation, for example light, transfers radiant energy from 
place to place (see Chapter 4).

 The random kinetic energy and potential energies of the molecules inside 
everything is called internal energy (see Chapter 3).

 The mass of an object at rest has an equivalent amount of energy (see 
Chapter 7).

■ Table 2.1 summarises the different forms of energy.

Table 2.1

Potential Motion Transfer Molecular Mass
gravitational

kinetic

work

internal rest mass
electric and magnetic mechanical waves/sound
chemical electromagnetic waves
nuclear electric currents
elastic strain thermal 

QUESTIONS TO CHECK UNDERSTANDING 
36 Refer to the Figure 2.23. 

a What was the original length of the spring before it was stretched 
(assume that it followed Hooke’s law)?

b Calculate the work done when the spring’s length was increased from 
2.2 cm to 2.6 cm.

37 Sketch a force–distance graph (with estimates of numerical values) to 
represent the impact of kicking a football.

38 Rubber becomes much stiffer the more it is stretched. This means that equal 
increases in extension require more and more extra force. A rubber band 
was stretched and it broke when its extension was 38 cm and the stretching 
force was 22 N. 

a Sketch a possible force–extension graph to represent this behaviour. 

b Use your graph to estimate the energy transferred to the rubber during 
stretching. 

c What happens to this energy if the band breaks?

Common mistakes

Unfortunately, the use of the terms heat, thermal energy and internal energy 
can be confusing because various courses, books and teachers can use these 
terms in different and contradictory ways. In particular the word heat causes 
confusion, especially since the word is used so widely in everyday conversations. 
It should be clear that the energy of molecules inside a material (internal energy) 
is fundamentally different from energy spreading from place to place because 
of a temperature difference (thermal energy). It may be better not to call either 
of these heat. To add to the confusion a significant number of sources refer to 
internal energy as thermal energy.

Key concept
The gradient of a force-extension 
graph represents the force 
constant, k, (stiffness) of the 
spring or material. The area under 
the graph represents the energy 
transferred during the chosen 
extension.
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Principle of conservation of energy 
■ When anything changes, energy is transformed. The study of physics involves 

identifying and quantifying these energy transformations.
■ Calculating numerical values for the different forms of energy is an important 

part of physics.
 The principle of conservation of energy means that, in theory, we can 

numerically account for all the energy that is transferred in any process.
 The dissipation of energy results in increased internal energy and temperature 

in the surroundings and the spread of thermal energy.
■ It should not be suggested that the dissipated energy has disappeared, or 

gone somewhere that we do not know. The use of the phrase ‘lost energy’ is 
misleading.

■ In mechanical processes the dissipation of energy is due mainly to friction.

Key concepts
The principle of conservation 
of energy states that energy 
cannot be created or destroyed, it 
can only be transferred.

Some useful energy is always 
dissipated (spread out and 
unrecoverable) into useless energy 
in the surroundings / environment 
in all macroscopic processes.

QUESTIONS TO CHECK UNDERSTANDING 
39 List the energy transformations which take place in a smart phone.

40 An arrow is fired from a bow into a 
target. See Figure 2.24. What energy 
transformations are involved?

41 Beginning with the Sun, outline all the 
important energy transformations that have 
taken place in the production of oil and its 
subsequent use to generate electricity for 
our homes.

 
  Figure 2.24

Kinetic energy 
■ Work has to be done to make objects move, or move faster. So that, all moving 

masses have energy because of their motion. This is called kinetic energy.

■ Kinetic energy is connected to momentum, p (see Section 2.4), by the equation 

EK = 
2

2p
m

. This equation is most commonly used in atomic physics.

Expert tip

Note that kinetic energy depends on speed squared. This means that if, for 
example, the speed of a car increases from 5 m s−1 to 20 m s−1, its kinetic energy 
increases by a factor of (20

5 )2 = 16. To stop a vehicle moving at twice the speed, 
four times as much kinetic energy has to be transferred from it. This may mean 
four times the braking distance.

Expert tips

The minimum force needed to lift an object is equal to its weight. There would 
then be no resultant force on it and it could be lifted at a constant velocity. Any 
greater force will produce an acceleration upwards.

If an object is raised the same vertical height but at an angle less than 90° to 
the horizontal surface (along a slope for example), less force will be needed, 
but the distance moved will be greater. If there is no friction, the work done 
will be the same. 

Gravitational potential energy 
■ When a mass is raised away from the Earth, work has to be done on the mass. 

The force needed is considered to be equal to the weight of the object.
■ Work done = F × s = weight (mg) × change of height (Δh) = mgΔh.

Key concept
Kinetic energy can be calculated 
from the mass and speed of an 
object: EK = 12 mv2
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Elastic potential energy 
■ A material can be described as elastic if it returns to its original shape after a 

deforming force has been removed. (Elastic does not necessarily suggest that a 
material is easy to stretch.)

■ When a spring or material is deformed elastically we say that elastic 
potential energy is stored in it because the energy could be used to do 
something useful when the force is removed. A material which is deformed is 
said to have a strain, so that this kind of energy is sometimes known as elastic 
strain energy.

Discussing the conservation 
of total energy within 
energy transformations 
■ This heading could apply to any topic within physics, but here we are just 

discussing mechanical energy transformations involving forces changing 
the shape, position or motion of an object. The following two energy 
transformations are very common.

■ When objects moving horizontally are accelerated (or decelerated) by a 
constant force, F, acting at an angle θ to the direction of motion through 
a distance s, the work done equals the change in kinetic energy:  
Fs cos θ = 12mv2 − 12 mu2. As discussed before, if the force varies, an average 
value must be used in the calculation, which may mean that the area under a 
force–distance graph must be considered.

■ For unpowered objects moving up or down vertically under the effects 
of gravity (without air resistance or friction), the change in gravitational 
potential energy equals the change in kinetic energy: mgΔh = 12 mv2 − 12 mu2.

�h
�EP � mg�h

m

m

Figure 2.25

■ Gravitational potential energy, EP, is energy possessed by a mass because of 
its position in a gravitational field.

■ When a mass is moved away from the Earth, the work done on the mass results 
in an increase in gravitational potential energy, ΔEP. See Figure 2.25. 

■ When a mass moves towards the Earth work is done by the field on the mass, 
resulting in a decrease in gravitational potential energy (maybe it is transferred 
to kinetic energy).

■ We refer to changes in gravitational potential energy (rather than absolute 
values) because a mass on a table top, or the surface of the Earth, is not 
considered to have zero gravitational potential energy (see Chapter 10).

Expert tip

The equation ΔEP = mgΔh can only be used for motion on, or close to, the Earth’s 
surface, where g is constant. Chapter 10 considers calculations of gravitational 
potential energy in circumstance where g varies.

Expert tip

An object sliding down a slope would 
reach the bottom with the same 
speed as an object dropped vertically 
the same distance if there was no 
friction. 

QUESTIONS TO CHECK UNDERSTANDING 
42 What average resultant force is needed to increase the speed of a 1.5 × 

105 kg train from 10 m s−1 to 16 m s−1 in a distance of 2 km?

43 a Explain why a car will probably need a greater distance to decelerate 
from 30 m s−1 to 20 m s−1 than from 20 m s−1 to 10 m s−1. 

b After the speed of a car has been reduced, where has the difference in 
kinetic energy gone?

Key concept
Changes in gravitational potential 
energy are equal to the work 
done during the movement: EP = mg h.

Key concepts
Elastic potential energy can be 
determined from EP = 12kΔx2 where 
k is the force constant of the spring/
material and Δx is the extension.

Elastic potential energy may also 
be determined from the area under 
a force-extension graph.

Key concept
The principle of conservation 
of energy can be used with the 
equations for mechanical energies 
to help predict what will happen in 
a wide range of interactions. The 
results of such calculations should 
be considered as estimates because 
they do not allow for the inevitable 
dissipation of some energy.
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Power as rate of energy transfer 
■ The time taken for similar energy transfers can vary considerably. 
■ Power is the rate of doing work, or more generally, the rate of transferring 

energy. 
 The unit of power is the watt, W (1 W = 1 J s–1). 

■ Since the work done by a constant force on a vehicle moving in a straight line 
with a constant speed, v, is Fs, the power needed is Fs

t , so that P = Fv. Because 
the vehicle has a constant velocity, the forward force and the resistive forces 
are equal and opposite, so that this equation enables us to calculate the output 
power needed for a vehicle to maintain a constant speed against a known 
resistive force, F.

 Solving problems involving power 
■ The concept of power may be usefully applied to almost any device, machine 

or process.
■ We should distinguish between the total power input to a device and the useful 

power output.

QUESTIONS TO CHECK UNDERSTANDING 
47 a How much energy is transferred by a 14 W light bulb in 2 hours? 

b Is 14 W the total power into the bulb or the useful power out? 

c What are the energy transfers involved?

48 What is the output power of an electric motor which raises an object of 
mass 120 kg a height of 4.3 m in 68 s? 

49 What is the total resistive force opposing an aircraft travelling at 250 m s−1 if 
the total output power of the engines is 1800 MW?  

44 When a frictionless pendulum of mass 84 g swings, its vertical height above 
the floor varies between 1.38 m and 1.29 m. What is:

a its total energy 

b its maximum speed?

45 When stretched, a rubber band had an effective average force constant 
of 420 N m−1. It was stretched and then released to project a small mass of 
4.3 g vertically. 

a If the band’s extension was 12 cm, what is the maximum possible height 
to which the mass could rise? 

b Explain why, in practice, the height will be considerably less.

46 A steel sphere of mass 12 g was dropped from a height of 1.24 m onto sand. 

a What was the speed of impact? 

b The sphere was removed carefully from the sand and the depth of 
the indentation was measured to be 0.70 cm. Determine the average 
retarding force on the sphere. 

c After the impact the ball was stationary. Where has its previous energy 
gone? 

Common mistakes

The last question contains an 
important, but widely misunderstood 
fact: The force that a falling object 
exerts on a surface is not equal to its 
weight. The magnitude of the force 
is dependent on the nature of the 
impact.

Key concept
Power, P = 

workdone(energytransferred)
time taken

Efficiency 
■ Whenever energy is transferred in any macroscopic process, the energy 

output that is useful to us is always less than the total energy input.
■ This is because some energy is always dissipated into the surroundings as 

increased internal energy and thermal energy spreading out. Figure 2.26 
represents the energy ‘flow’ of a simple process. 

useful energy
outputtotal

energy
input

energy transferred to
the surroundings

Figure 2.26
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■ Sometimes we may refer to the ‘loss’ of (useful) energy, or to ‘useless energy’, or 
to energy ‘wasted’, but these descriptions may sometimes be considered as too 
vague and unhelpful.

 Quantitatively describing efficiency in energy 
transfers 

■ Efficiency is a ratio, always less than one. It has no units, but it is often 
expressed as a percentage. That is, an efficiency of 0.50 may be quoted as 50%. 
Figure 2.26 illustrates a process which is about 50% efficient.

■ Scientists and engineers spend a lot of time trying to improve the efficiency of 
processes in order to conserve energy resources and limit global warming.

QUESTIONS TO CHECK UNDERSTANDING 
50 The efficiency of a power station with a 1.8 GW output is 0.32. What is the 

input power?

51 a A car was accelerated from rest in order to estimate its overall efficiency. 
It gained kinetic energy of 4.0 × 105 J while using 45 ml of fuel. 
Determine the efficiency of this process if the energy density of the fuel 
is 3.3 × 107 J l−1. 

b Would it be fair to say that the efficiency of a car travelling at constant 
velocity was zero?

52 Explain why an electric kettle (water heater) is much more efficient than an 
electric food mixer.

NATURE OF SCIENCE

 Theories
The conservation of energy is one of the most important theories in the whole 
of science. Arising from observations and experiments over many centuries, the 
theory is easily expressed, but its basic generalisation is impossible to prove for all 
time and every possible location. However, there has never been any confirmed 
exception and scientists have even used their profound belief in the theory to 
explain that energy and mass are equivalent.

2.4 Momentum and impulse
Essential idea: Conservation of momentum is an example of a law that is never 
violated.

Expert tip

In this chapter we are discussing only straight line (linear) motion. When objects 
spin they have angular momentum (Option B1), an important concept, but not of 
concern here.

Key concept
The efficiency of an energy 
transfer is defined as:  efficiency = 
useful energy(orpower)output

total energy(orpower)input
.

Key concept
The linear momentum, p, of a 
moving mass is defined as its mass 
× velocity (unit: kg m s–1): p = mv. 

Momentum 
■ Momentum is a vector quantity, the direction of motion must always be 

considered.
 Momentum is a very important concept because it enables us to interpret 

and use Newton’s laws more broadly and, in particular, because it is always 
conserved in collisions (see below). 
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■ As explained before, we can obtain an alternative expression for kinetic energy 
(½mv 2) using the concept of momentum: EK = p2

2m. This equation is used most 
commonly for high speed particles in atomic physics. 

Newton’s second law expressed in 
terms of rate of change of momentum 
■ Since a = (v − u)

t
 (from Section 2.1), we can re-write Newton’s second law,  

F = ma (from Section 2.2), as F = (mv − mu)
t

.

 Using Newton’s second law quantitatively and 
qualitatively in cases where mass is not constant 

■ Newton’s second law in the form F = ma can only be used with constant 
masses moving in straight lines. If the mass is changing we need to use the law 
in the form F = Δp

Δt.

Expert tip

When forces act on subatomic 
particles making them accelerate 
to very high velocities, their masses 
increase as well as their speeds 
(because of relativistic effects). This is 
an example of an occasion when the 
equation F = ma would be of no use.

Expert tip

It must be stressed that this analysis 
is only valid if there are no other 
forces acting. To make this clear, we 
often refer to isolated systems, or the 
absence of any external forces.

QUESTIONS TO CHECK UNDERSTANDING 
53 a A 250 g ball falling vertically has a speed of 12 m s−1 just before it hits the 

ground. What is its momentum? 

b What is the momentum of the ball just after it rebounds with an initial 
speed of 8.5 m s−1? 

c What was the change in momentum of the ball? 

d If the duration of the impact was 0.37 s, what average force was exerted 
on the ball by the ground?

54 What is the linear momentum of an atomic particle of mass 6.7 × 10−27 kg 
and kinetic energy 2.7 × 10−13 J?

55 What average force is needed to accelerate a car of mass 1320 kg from 
4.3 m s−1 to 7.5 m s−1 in a time of 3.9 s?

56 A space rocket is using fuel at a constant rate so that there is a constant 
forward force acting on it. 

a Explain why the mass of the rocket will be decreasing. 

b Use Newton’s second law to account for the motion of the rocket.

Conservation of linear momentum 
■ Newton’s third law (Section 2.2) explained that if an object A exerted 

a force, +F on object B, then object B must have exerted a force −F on 
object A (the same sized force, but in the opposite direction). From 
the momentum interpretation of Newton’s second law given above, 
we can now see that if, as a consequence of an isolated interaction, 
object A’s momentum changes by +p, then object B’s momentum must 
change by −p in the same time. So that, overall, there is no change of 
momentum.

■ This section of the chapter concerns impacts and collisions that generally 
occur in short intervals of time. Generally these can be described as 
interactions involving forces between various objects.

■ In an isolated system the total momentum before any interaction is equal to 
the total momentum after. For masses A and B interacting (only) with each 
other: pA = −pB or, in more detail: mAuA + mBuB = mAvA + mBvB. 

 Sometimes it may seem as if momentum (and kinetic energy) has been created 
from nothing. An example would be firing a gun. But it must be remembered 
that momentum is a vector: there was no momentum before and, when we 
take direction into account, the total momentum afterwards also adds up  
to zero.

Key concept
The law of conservation of 
linear momentum states that 
the total (linear) momentum of a 
system is constant, provided that 
there are no external forces acting 
on it.

Key concept
Force = rate of change of 
momentum, F = Δp

Δt.
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Expert tips

In macroscopic interactions a system 
can never be completely ‘isolated’ 
from external forces like friction. 
However, it is often still possible to 
use the conservation of momentum 
to help predict what will happen at 
the time of the interaction. However, 
subsequent motions would have 
to take into account the effect of 
friction, etc.

On the microscopic scale, interactions 
between atomic particles can usually 
be considered as occurring in isolated 
systems.

QUESTIONS TO CHECK UNDERSTANDING 
57 A 1.2 kg trolley moving at 0.82 m s−1 collides on a friction-free surface with 

a 1.8 kg trolley which is stationary. If the trolleys stick together, predict their 
speed after the collision.

58 A sphere of mass 340 g moving at 1.20 m s−1 collides with another sphere of 
mass 220 g travelling in the opposite direction with a speed of 0.85 m s−1. 

 After the collision the smaller sphere returns along its original path with a 
speed of 0.62 m s−1. What was the velocity of the larger sphere after the 
collision? 

59 With what velocity does a 1.4 kg rifle recoil when it is firing a 3.6 g bullet at 
430 m s−1?

60 In a high pressure water jet cutter, such as shown in Figure 2.28, the water 
emerges at a speed of 700 m s−1. 

a If the flow rate is 200 g min−1, estimate the average force exerted while 
the jet impacts the metal plate. 

b If the pressure exerted by the jet is 6.0 × 108 Pa, estimate the cross-
sectional area of the jet.

  Figure 2.28

■ If objects are pushed apart (quickly) we may refer to ‘explosions’. A one-
dimensional example would be the recoil of a cannon when firing a cannon 
ball. Figure 2.27 shows the principle.

 Applying conservation of momentum in simple 
isolated systems including (but not limited to) 
collisions, explosions, or water jets 

■ Since there are no exceptions, the law of conservation of momentum can be 
used with confidence in any situation to help predict what will happen in an 
interaction. 

stationary

before

after

Figure 2.27

Impulse and force–time graphs 
■ If a force acts for a longer time it has a greater effect in changing motion. 

Therefore, the product of multiplying force and the time for which it acts is 
important, and it is called impulse.

■ We do not use a symbol for impulse in this course. We have seen that 
Newton’s second law can be expressed as F = Δp

Δt. Simple rearrangement gives  
impulse = FΔt = Δp.

Key concept
Impulse = FΔt (unit : N s). 
Impulse is equal to the change of 
momentum.
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 Sketching and interpreting force–time graphs 
■ Calculating the impulse delivered by a constant force for a known time is 

straightforward. However, as discussed earlier, forces in interactions are usually 
not constant and they do not always vary in regular ways.

■ Force–time graphs are a useful way of representing varying forces during an 
interaction.

■ Figure 2.29 shows how force varied during a collision. The shaded area equals 
the impulse (= change of momentum). It can be estimated from the area 
within the red rectangle.

 Determining impulse in various contexts including 
(but not limited to) car safety and sports 

■ Force–time graphs for collisions between vehicles, collisions of passengers or 
drivers with the interior of cars, or with seat belts (or air bags), are very useful 
in the analysis of safety.

■ Sporting impacts, such as between a racket and a ball, can be analysed in a 
similar way and can lead to improved performance.
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Key concepts
A collision in which the sum 
of the kinetic energies of all 
the masses is the same after the 
collision as it was before is known 
as an elastic collision.

When colliding objects stick 
together it is described as a totally 
inelastic collision.

QUESTIONS TO CHECK UNDERSTANDING 
61 Figure 2.30 shows how the force on a golf ball changed when it was struck 

by a golf club. 

a Estimate the impulse given to the ball. 

b If the ball had a mass of 46 g, determine its speed as it leaves the club.

62 a Estimate the momentum of an adult passenger in the front seat of a car 
moving at about 30 km h−1. 

b While moving at this speed the car had an accident which quickly 
reduced the car’s speed to zero. The passenger was protected by an air 
bag released during the accident. Sketch a graph to show how the force 
on the passenger from the air bag may have changed during this time. 

c Estimate the maximum force on the passenger. With an air bag, this 
force is spread over a relatively large area. 
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Figure 2.30

Elastic collisions, inelastic 
collisions and explosions 
■ The use of the conservation of momentum on its own cannot predict the 

outcome of collisions. For example, when a rubber ball is dropped onto a floor 
the outcome is very different from the impact of an egg of the same mass and 
velocity with the same floor. 

■ To make predictions we also need to know about the nature of the colliding 
objects and, of course, there is a very wide range of possibilities. However, we 
can identify extremes: elastic and inelastic collisions.

 Perfectly elastic collisions are not possible in the macroscopic world because of 
the dissipation of energy into the surroundings. Collisions between particles 
on the atomic scale are usually (but not always) elastic.

 So, all realistic macroscopic collisions are inelastic: during inelastic collisions 
some of the kinetic energy is transferred to other forms of energy. 

■ The conservation of momentum in explosions has already been discussed.

Key concept
The area under a force–time 
graph represents the impulse 
(= change of momentum) during 
an interaction.
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 Qualitatively and quantitatively comparing 
situations involving elastic collisions, inelastic 
collisions (and explosions) 

QUESTIONS TO CHECK UNDERSTANDING 
63 A mass of 2.1 kg moving at 5.0 m s−1 to the right collided on a friction-free 

surface with a 3.4 kg mass travelling in the opposite direction at 7.0 m s−1. 
After the collision the smaller mass moved to the left with a speed of 
9.8 m s−1. 

a Determine the velocity of the other mass. 

b Make calculations to check if this was an elastic collision.

64 It seems that materials that behave elastically are more likely to be involved 
in elastic collisions. Give an example.

65 A car of mass 1340 kg travelling at 29 m s−1 drove into the back of a 9600 kg 
truck travelling at 23 m s−1 in the same direction. Assuming that there were 
no external forces and that this was a totally inelastic collision, determine 
the speed of the two vehicles immediately after the accident.

Expert tips

For an elastic collision, as well as the conservation of momentum, we can write 
down an equation showing the conservation of kinetic energy. These two 
equations could then be solved simultaneously to determine the only possible 
velocities of the two masses after an elastic collision (but this is not required by 
this course). One example is well known: if a moving mass could collide elastically 
with an identical mass which was stationary, the moving mass would stop and 
the other mass would then move on with the same velocity as the first.

There are occasions when it seems as if all kinetic energy and momentum have 
been lost in a collision, for example when a sandbag is dropped on the floor. 
Examples like this involve one (or both masses) being extremely large, like the 
Earth itself. But momentum must have been conserved, which means that some 
kinetic energy must also still be present. However the large size of the mass 
means that its change of speed during the collision is unobservably small.

NATURE OF SCIENCE: 

 The conservation of momentum
The fact that forces must always occur in pairs (Newton’s third law) can 
be expressed in terms of momentum conservation, a law that has profound 
importance because there are no exceptions. The law can be used to help predict 
events as varied as atoms emitting radiation, car accidents and asteroid impacts.
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Essential idea: Thermal physics deftly demonstrates the links between the 
macroscopic measurements essential to many scientific models with the 
microscopic properties that underlie these models.

3.1 Thermal concepts

Molecular theory of solids, 
liquids and gases 
■ Macroscopic describes things that we can observe with our (unaided) eyes. 

Microscopic describes things that are much smaller, and in the context of 
physics this often means the size of atoms and molecules.

■ Most substances are made of molecules, although a few are atomic. In 
this chapter we use molecules as a general term to describe the particles 
in any substance.

■ The molecules in solids are held close together by electric forces and they are 
usually in regular patterns. The molecules vibrate about their mean positions. 
See Figure 3.1.

solids have a
fixed shape
and volume

molecules vibrate
in fixed position

liquids have a
fixed volume

but a variable shape

molecules have enough kinetic energy to
overcome some forces and move around

gases do not
have a fixed shape

or volume

molecules move in random
directions at high speeds

Figure 3.1

■ In liquids the molecules still vibrate, but sometimes the forces between them 
are overcome, allowing molecules to move around a little, but not freely. The 
molecules are still almost as close together as in solids, but there is little or no 
regularity in their arrangement, which is constantly changing.

■ In gases the molecules are much further apart than in solids and liquids, 
and the forces between molecules are very, very small and considered to be 
negligible, except when the molecules collide. This results in all molecules 
moving independently in random directions with a range of different 
(usually fast) velocities. The velocities of molecules continually change as they 
collide with each other (and the walls of their container).

Key concept
Throughout science, macroscopic 
observations of how substances 
behave can usually be explained 
by a microscopic understanding 
of what the particles within the 
substance are doing.
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Expert tip

A typical gas density (air, for example) is about 1000 × less than the density of 
most liquids (water, for example). This means that each molecule has, on average, 
about 1000 × more space to occupy. This fact tells us that the average separation 
of gas molecules is about 10 × that in liquids and solids (103 = 1000). Molecular 
separations in solids and liquids are approximately 10−10 m and in gases it is about 
10−9 m. Gas molecules are still very close together!

Internal energy 
■ All substances contain molecules that are vibrating and/or moving around 

(translational motion). Because of their movement, the molecules have 
kinetic energy, which is described as random because there is no pattern to this 
movement.

■ The molecules in solids and liquids also have potential energy (as well as kinetic 
energy) because there are electric forces between them. The potential energy 
between gas molecules is usually considered to be negligible because the 
molecules are much further apart.

■ If the average internal energy per molecule in one part of a substance is greater 
than another part, then the energy will spread out until it is evenly distributed. 
This movement of energy is called thermal energy (see below).

Temperature and absolute temperature 
■ In everyday conversation, we use the idea of temperature as a number which 

represents how hot (or cold) something is. But that is not precise enough for a 
scientific definition. 

■ We know that thermal energy flows from hotter places to colder places, so we 
can also say that temperatures determine the direction of net thermal energy 
flow.

 Describing temperature change in terms of internal 
energy 

■ Since internal energy spreads out from places where it is more concentrated, 
we can make a connection between temperature and the concentration of 
energy: if the temperature of a substance increases, it is because the average 
internal energy of its molecules has increased.

■ We will see later that temperature is related to the average random kinetic 
energy of molecules.

 Using Kelvin and Celsius temperature scales and 
converting between them 

■ The Celsius temperature scale is an arbitrary scale based (for convenience) 
only on the melting and boiling points of pure water. It was decided to call 
these 0 °C and 100 °C, with one hundred divisions between them. It is 
important to realize that 0 °C is not in any sense a true zero of temperature.

■ The Kelvin temperature scale was designed to overcome this problem. Its units 
are kelvin, K. This scale has a true zero (0 K) as the temperature at which 
(almost) all molecular motion has stopped (see later). For this reason the 
Kelvin temperature scale is also known as the absolute temperature scale, 
and 0 K is called absolute zero. On the Celsius scale absolute zero has the value 
of −273 °C (more precisely, −273.15 K).

Key concept
The total of all of the potential 
energies and the random kinetic 
energies of the molecules inside 
a substance is called its internal 
energy. (It should not be called 
heat)

Key concept
When thermal energy is supplied 
to a substance, its internal energy 
increases and its temperature rises.

Key concepts
(Almost) all molecular motion 
stops at −273° C. This is called 
absolute zero. 

Absolute zero is the basis for the 
Kelvin temperature scale.
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■ It was decided that each division on the Kelvin (absolute) scale should be 
equal to each division on the Celsius scale. This enables easy conversions 
between the two scales: temperature (K) = temperature (°C) + 273 (see 
Figure 3.2). The symbol T is used to represent temperature, especially 
absolute temperature, but it is also common to use θ for temperatures in 
degrees Celsius.

■ Calculations involving only single temperatures should always use the Kelvin 
scale, but calculations involving changes of temperature can use the Kelvin or 
the Celsius scale. 

QUESTIONS TO CHECK UNDERSTANDING
1 Describe the differences in motion of a single molecule in ice, water and 

steam.

2 A sealed bottle of water was taken from a refrigerator and left in a warm 
kitchen. Explain, in terms of its molecules, what happened to the internal 
energy and temperature of the water in the next few minutes.

3 a The temperature in a room rises by 5 °C. What is this rise in kelvin?

b The boiling point of oxygen is 90 K. Convert this temperature to °C.

4 a Explain why it may be reasonable to say that an increase in 
temperature from 50 K to 100 K is doubling the temperature, but 
increasing a temperature from 50 °C to 100 °C is not doubling it. 

b Why is the Kelvin temperature scale also referred to as the absolute 
temperature scale?

Thermal energy
■ When objects are at different temperatures, energy will always fl ow from 

hotter to colder.
■ The principal means of thermal energy transfer are conduction, convection 

and radiation (briefly discussed in Section 8.2).
■ Insulation of various kinds can be used to reduce the flow of thermal 

energy.
■ If two or more objects are at the same temperature there will be no net flow 

of thermal energy between them and they are described as being in thermal 
equilibrium. 

■ If two (or more) objects with different temperatures are able to transfer 
thermal energy between themselves, the cooler one will get warmer and the 
hotter one will get cooler, until they reach thermal equilibrium (if insulated 
from the surroundings), as shown in Figure 3.3.

Key concept
When objects are at different 
temperatures, energy will always 
flow from hotter to colder. This flow 
of energy is called thermal energy 
and it is given the symbol Q.

Expert tip

Thermal equilibrium should be seen as an idealized concept because perfect 
insulation is impossible. There will always be some flow of thermal energy to, or 
from, the surroundings.

Common mistake

The same difficulties with molecular energy concepts can occur in this topic 
as first discussed in Topic 2. The following reminder of common mistakes is 
repeated from Section 2.3.

Unfortunately, the use of the terms heat, thermal energy and internal energy 
can be confusing because various courses, books and teachers can use these 
terms in different and sometimes contradictory ways. In particular the word 
heat causes confusion, especially since the word is used so widely in everyday 
conversations. It should be clear that the energy of molecules inside a material 
(internal energy) is fundamentally different from energy spreading from place 
to place because of a temperature difference (thermal energy). It may be better 
not to call either of these heat. To add to the confusion a signifi cant number of 
sources refer to internal energy as thermal energy.

Figure 3.3
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Heating 
■ The temperature of an object can be raised by two different methods: (1) by 

doing mechanical work on it (for example, by friction), or (2) by transferring 
thermal energy to it, a process we call heating. This chapter is mostly about the 
physical effects of heating.

■ If a substance is heated at a constant rate its temperature rise every minute would 
be the same, but only if no energy was transferred to the surroundings (perfect 
insulation). In practice, some (possibly a lot) of the thermal energy supplied to 
the substance is then transferred to the surroundings.

■ The dotted line in Figure 3.4 shows how the temperature of a substance heated 
at a constant rate changes in the idealized case when no thermal energy is 
transferred to the surroundings. The red line is a more realistic example: 
the rate of temperature rise decreases as the substance gets hotter because 
thermal energy is transferred away at an increasing rate. If the input power 
continued, eventually the temperature would become constant. Under these 
circumstances the substance is transferring energy to the surroundings at the 
same rate as energy is being supplied to it.

Specific heat capacity 
■ If we transfer the same amount of thermal energy to the same masses of 

different substances, the temperature rises will all be different. Each substance 
has a different heat capacity.

■ If, when thermal energy Q is supplied to a mass m and the temperature rise 
is ΔT, the specific heat capacity of the substance can be determined from 

c = Q
mΔT. This equation is more commonly written as Q = mcΔT.

■ The unit of specific heat capacity is J kg−1 K−1 or J kg−1 °C−1. 
■ Alternatively, mcΔT may be interpreted as the change in internal energy of 

a mass m of a pure substance of specific heat capacity c when its temperature 
changes by ΔT.

Key concept
The specific heat capacity, c, of 
a pure substance is defined as the 
amount of energy that is needed 
to raise the temperature of one 
kilogram by one kelvin (or 1 °C).

Expert tip

Raising the temperature of water is a very common human activity and it should 
be noted that water has a very high specific heat capacity. In practical terms this 
means that a relatively large amount of energy is needed to heat water, and a lot 
of energy has to be removed from water to cool it down.

Figure 3.4
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 Applying the calorimetric techniques of specific heat 
capacity experimentally

■ In order to determine the specific heat capacity of a substance experimentally 
it is necessary to transfer a known amount of energy to a known mass, and 
measure the resulting temperature rise. Often, the most convenient way of 
doing this is by using an electrical immersion heater of known power.

■ Figure 3.5 shows an immersion heater and thermometer inside holes drilled in 
an insulated metal block.

■ Experiments which involve measuring thermal energy transfers may be described 
as calorimetric. (Sometimes special equipment called calorimeters are used.)

■ In order to obtain accurate results in calorimetry experiments it is necessary to 
use insulation (sometimes called lagging) to limit thermal energy flowing to, or 
from, the surroundings.

■ It is common to refer to the flow of energy to or from a system and its 
surroundings. The system is the object under investigation and the 
surroundings are everything else (sometimes referred to as the environment).

■ Another calorimetry technique involves placing two objects or substances 
at different temperatures together in good thermal contact until they reach 
thermal equilibrium. The decrease in internal energy of one can then be 
equated to the increase in internal energy of the other, assuming that they are 
isolated from their surroundings.

Figure 3.5
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 Calculating energy changes involving specific heat 
capacity

■ When single substances change temperature we can use mcΔT to calculate 
the energy transferred to (or from) the substance. This can be equated to the 
energy transferred in heating, Q, or in doing physical work, W, assuming that 
no energy was transferred to, or from, the surroundings.

■ It is common for work to be done by resistive forces (such as friction) as the 
kinetic energy of an object is reduced and transferred into internal energy, so 
that ΔKE = mcΔT.

■ A similar calculation may be used to determine the possible temperature rise 
of substance (e.g. water) falling a known distance: mgΔh = mcΔT.

QUESTIONS TO CHECK UNDERSTANDING
 5 a What is the minimum power needed for an electrical heater that is capable 

of raising the temperature of 0.60 kg of water from 23 °C to its boiling 
point in two minutes? (Assume the specific heat capacity of water is 
4180 J kg−1 K−1.)

b Explain why, in practice, a greater power would be needed.

 6 Describe an experiment to determine the specific heat capacity of water.

 7 How much thermal energy has to be removed from the air in a room of volume 
50 m3 in order to reduce its temperature from 30 °C to 20 °C? (Assume the 
specific heat capacity of air is 1000 J kg−1 K−1 and its density is 1.2 kg m−3.)

 8 0.56 kg of a metal alloy at 750 °C was placed in 1200 g of water at 23 °C (see 
Figure 3.6). The water was stirred and after thermal equilibrium had been 
reached the temperature of the water was 39 °C. Determine the specific 
heat capacity of the metal. (Assume the specific heat capacity of water is 
4180 J kg−1 K−1.) 

 9 Explain the difference between thermal energy and internal energy.

10 A bullet was fired at a speed of 420 m s−1 into a large block of wood. If 50% of the kinetic energy of the bullet was 
transferred to internal energy in the bullet, estimate its temperature rise. (Assume the specific heat capacity of the metal 
of the bullet was 480 J kg−1 K−1.) 

11 a Estimate the average temperature rise when a 10 kg bag of sand is dropped 1.6 m onto the ground. (Specific heat 
capacity of sand ≈ 830 J kg−1 K−1.)

b What assumption did you make?

Figure 3.6
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Common mistakes

Do not confuse this meaning of phase 
with the use of the same word to 
compare oscillations (see Section 4.1).

Solids, liquids and gases are 
sometimes called three states of 
matter, so that changes of phase 
are sometimes called changes of 
state. However, it is better to avoid 
this term here because it may be 
confused with the ‘state’ of a gas 
– meaning its physical properties. 
To illustrate the general difference 
between phase and state: water and 
ice are two different phases and 
two different states (of the same 
substance); water and oil are also two 
different phases because they are 
different substances, but the same 
state. 

Phase change 
■ A phase is a region of space in which all the physical and chemical properties 

of a substance are the same.
■ In this section we are concerned with substances changing phase from solid to 

liquid and from liquid to gas, and vice versa.
■ The change of phase from a solid to a liquid at constant temperature is called 

melting or fusion. The reverse is called freezing (or solidification). Both these 
processes occur at a precise temperature (for a particular substance).

■ Changing from a liquid to a gas may be by the process of boiling or by 
evaporation. The reverse is called condensation.

■ Evaporation can occur at any temperature (at which the substance is liquid) 
and it occurs only on the surface. Boiling occurs at a precise temperature 
throughout the liquid.

 Describing phase change in terms of molecular 
behaviour 

■ When solids which do not melt are heated, the thermal energy supplied 
overcomes some intermolecular forces and therefore increases some molecular 
potential energies. But most of the thermal energy supplied increases the 
average kinetic energy of the molecules and this is observed as a rise in 
temperature.
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■ But at the melting point of the solid all of any thermal energy supplied is 
transferred to overcoming intermolecular forces and the solid’s regular 
molecular structure is lost as the substance becomes a liquid. Since there is no 
increase in molecular kinetic energies, the temperature remains constant until 
all the solid has melted. 

■ Similarly, when thermal energy is supplied to a liquid at its boiling point, all of the 
energy is transferred to overcoming the remaining intermolecular forces as a gas 
is formed. Again, since there is no increase in average molecular kinetic energies, 
the temperature remains constant until all of the liquid has turned to gas. 

■ Conversely, when gases condense or liquids freeze at fixed temperatures, there 
are changes in molecular potential energies so that thermal energy is released, 
but there are no changes in molecular kinetic energies.

 Sketching and interpreting phase change graphs 
■ When a hot substance (which does not change phase) is allowed to cool 

naturally, its temperature will fall as shown in Figure 3.7. The rate of cooling 
at different temperatures may be determined from gradients of the graph. 
The greater the difference between the temperature of the substance and the 
surrounding temperature, the more thermal energy per second is transferred 
away from the substance.

■ Figure 3.8 shows how this pattern of cooling changes when there is a change of 
phase. This example shows a substance solidifying (above room temperature). 
Note that the temperature remains constant during the time taken for the 
solidification (as mentioned above). The same pattern would be seen in the 
temperature of a gas condensing to a liquid.

■ Figure 3.9 shows the idealized example of a solid being heated at a constant 
rate (without energy losses) until it has all changed to a gas. 
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■ These three change of phase graphs all have time on the horizontal axis, but 
alternatively energy transferred could be used instead, and the graphs would 
still have similar shapes.

Specific latent heat 
■ The energy transfer associated with a change of phase at a constant 

temperature is called latent heat. For melting or freezing this is called the 
latent heat of fusion. For boiling or condensing this is called the latent 
heat of vaporization.

■ Latent heat has to be supplied in order to melt or boil substances, but equally 
important, latent heat is emitted from gases turning to liquids (e.g. steam 
condensing), or from liquids freezing.

■ If energy Q changes the phase of a mass m, the latent heat can be calculated 

from L = 
Q
m (unit: J kg−1). This is more commonly written as Q = mL.
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Key concept
The thermal energy supplied to a 
substance in the process of melting 
or boiling is used to overcome 
forces between molecules, but 
it does not increase the kinetic 
energy of the molecules, so that 
the temperature does not change.

Key concept
The specific latent heat of 
a substance, L, is defined as 
the amount of thermal energy 
transferred when there is a change 
of phase of one kilogram of the 
substance at constant temperature. 
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Expert tip

Liquids contain molecules with a range of kinetic energies. Faster moving 
molecules may be able to escape from the liquid if they are close to its surface. 
This process is called evaporation. The loss of some faster moving molecules 
means that the average kinetic energy of the remaining molecules must fall. This 
is observed as a drop in temperature whenever evaporation occurs.

 Applying the calorimetric techniques of specific 
latent heat experimentally 

■ In order to determine the latent heat of a substance experimentally, it is 
necessary to transfer a known amount of thermal energy to it when it is at its 
melting point or boiling point, and measure the corresponding mass of the 
substance that changed phase.

■ As with other calorimetric experiments, immersion heaters can be a 
convenient means of providing a known thermal energy transfer, but 
obtaining accurate results may be difficult unless the apparatus is well 
insulated or the experiment is performed quickly.

 Calculating energy changes involving specific latent 
heat of fusion and vaporization 

■ Freezing and boiling water are the most obvious examples. 

QUESTIONS TO CHECK UNDERSTANDING
12 Figure 3.10 shows an experiment to determine the latent heat of fusion of water in the form of ice. Describe how you 

would carry out this experiment and use the results to determine an accurate value for the latent heat.
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to power
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timer
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Figure 3.10

13 a How long will it take a 2.5 kW immersion heater to turn 10 g of water at 100 °C into steam at the same temperature? 
(Lv = 2.26 × 106 J kg−1)

b What assumption did you make? 

14 The latent heat of vaporization of a refrigerant liquid used in an air conditioner is 3.5 × 105 J kg−1. What mass would 
have to be changed into gas (at its boiling point) to require one million joules of energy to be removed from the air?

15 a 100 g of ice at −6.0 °C was added to 400 g of water at 25.0 °C. The mixture was stirred continuously until all the ice had 
melted. If at that moment the temperature of the water was 4.5 °C, determine a value for the specific latent heat of 
fusion of water. (Assume the specific heat capacities of water and ice are 4200 J kg−1 K−1 and 2100 J kg−1 K−1, respectively.) 

b Explain why the answer to part a is lower than the accepted value.
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NATURE OF SCIENCE

 Evidence through experimentation
The development of ideas about energy and ‘heat’ several hundred years ago 
occurred at a time when scientists did not have the instrumentation and 
technology that is available today. The concept that scientific advance is led by 
experiment and observation was not as fully established as it is now. Because 
of this, the particulate nature of matter was not fully understood and this lack 
of knowledge led to well-established but incorrect theories, which were later 
rejected as more experimental evidence became available.

3.2 Modelling a gas
Essential idea: The properties of ideal gases allow scientists to make predictions of 
the behaviour of real gases.

The physical properties of gases 
■ Gases are the simplest state of matter to understand. The physical 

behaviour of all gases under most circumstances follows similar patterns 
because the physical properties of gases depend only on the random 
nature of molecular motions, not chemical properties. (Refer back to the 
molecular theory of gases at the beginning of Section 3.1.) Forces between 
gas molecules are assumed to be negligible, unlike the forces between 
molecules in solids and liquids.

■ The four macroscopic properties of a gas that we can measure are mass, 
volume, temperature and pressure. Together, they describe the physical state 
of a gas.

 Pressure
■ The equation for pressure applies to all kinds of pressure, although in this 

chapter we are only concerned with gas pressure.
■ Gas pressure arises when a very large number of gas molecules hit the walls of 

a container. 
■ The mixture of gases in the air around us produces a large gas pressure called 

atmospheric pressure (≈ 1.0 × 105 Pa).

 Investigating at least one gas law experimentally
■ Assuming that experiments into the physical properties of gases are done 

with fixed masses of gases in sealed containers, there are just three variables 
which may change: pressure, volume and temperature. 

■ There are three classic experiments in which one of these three is kept 
constant while the relationship between the other two is investigated.

 Keeping the volume constant, vary temperature and see what happens to 
the pressure (see Figure 3.11).

 Keeping the pressure constant, vary temperature and see what happens 
to the volume.

 Keeping the temperature constant, vary pressure and see what happens 
to the volume.

■ Since all gases (or mixtures of gases) show similar patterns of physical 
behaviour, these experiments can be done with almost any gas or mixture of 
gases. Air is the obvious choice.

■ The results of these classic experiments helped physicists to better understand 
the concepts of pressure, temperature and energy. They are known as the gas 
laws.

Key concepts

Pressure p = 
force
area

 : (unit: N m−2),  

1 N m−2 is called a pascal, Pa.  

Density, ρ = mass
volume

 (unit: kg m−3).

pressure
gauge

short length of 
connecting tube

thermometer

water

gas under test

Figure 3.11
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The gas laws 
■ The gas laws are idealized and are said to represent the behaviour of ideal 

gases. Experiments with real gases can produce slight variations under some 
circumstances (see later).

■ As temperature is reduced, gas molecules move slower and each collision with 
the walls results in a smaller force and overall pressure. 

■ Results of gas laws experiments predict that if a gas was still a gas as it was 
cooled to very low temperatures, pressure and volume would reduce to (almost) 
zero at 0 K because all molecular motion would have stopped. For this reason 
0 K is called absolute zero. In practice, real gases liquefy and solidify before this 
can happen.

■ These three laws may be combined to give pV ∝ T . This means that if a fixed 
mass of gas is physically changed in any way, the ratio pV

T
 will always remain 

constant: 
p1V1

T1

 = 
p2V2

T2

 (sometimes called the combined gas laws equation).

 Sketching and interpreting changes of state of an 
ideal gas on pressure–volume, pressure temperature 
and volume–temperature diagrams 

■ The three gas laws are represented graphically in the following fi gures (Figures 
3.12, 3.13 and 3.14).

Key concepts
Pressure law – The pressure of 
(a fixed mass of) any gas with a 
constant volume is proportional to 
its absolute temperature: p ∝ T.

Charles’ law – The volume of (a 
fixed mass of) any gas at constant 
pressure is proportional to its 
absolute temperature: V ∝ T.

Boyle’s law – The pressure of 
(a fixed mass of) any gas at 
constant temperature is inversely 
proportional to its pressure: p ∝ 1

V
 .

Expert tip

In a fourth experiment, it can be 
shown that the pressure of a gas is 
proportional to the amount of gas 
(see below), provided that the volume 
and temperature are unchanged. 

 Solving problems using the gas laws 

■ For fi xed masses of real gases, the equation 
p1V1

T1

 = 
p2V2

T2
 can usually be used to 

predict the results of changing a gas’s pressure, volume or temperature. 

QUESTIONS TO CHECK UNDERSTANDING
16 Air in a container of volume 15 cm3 at a temperature of 18 °C was placed in 

boiling water for 10 minutes. 

a If the container was free to expand, keeping the pressure constant, 
what was the volume after the 10 minutes? 

b Why was it necessary to wait ten minutes?

17 In a school experiment, the pressure on a sample of air of volume 17 cm3 
(and constant mass) was increased from 1.2 × 105 Pa to 2.8 × 105 Pa. 

a Assuming the temperature did not change, what was the resulting 
volume of the air? 

b In reality, compressing a gas will always result in a temperature rise. Suggest 
how it might be possible to keep the temperature rise as low as possible.

18 The volume of a cylinder containing a gas was increased from 24 cm3 to 
33 cm3 and at the same time the temperature rose from 296 K to 323 K. If 
the original pressure was 2.3 × 105 Pa, what was the final pressure?

19 Describe in detail an experiment to investigate i how the volume of a gas 
changes when it is pressurized at constant temperature, OR ii how the 
volume of a gas changes when it is heated in a container which allows the 
pressure to remain constant.

20 Explain each of the three gas laws in terms of the microscopic behaviour of 
gas molecules.
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Mole, molar mass and the 
Avogadro constant
■ The rest of Section 3.2 discusses how the unpredictable, random behaviour of 

individual molecules results in the predictable macroscopic properties of gases. 
But first we need to establish a convenient way of (indirectly) counting large 
numbers of molecules and relating that to masses measured in kilogrammes.

■ The amount of a substance, n, is a measure of how many characteristic particles 
it contains. The amount of a substance, n, is different from its mass, m. 
Amount is measured in moles.

■ Figure 3.15 shows three balloons of equal volumes containing three different 
gases at the same pressure and temperature. Each balloon contains one mole 
of gas (6.02 × 1023 atoms of neon or 6.02 × 1023 molecules of oxygen or carbon 
dioxide).

QUESTIONS TO CHECK UNDERSTANDING
21 a How many moles are there in 1 kg of carbon-12? 

b How many atoms are in this amount?

22 A sample of hydrogen (H2) contains 1.5 × 1024 molecules.

a How many moles is this?

b If the molar mass is 2.02 g mol−1, what is the mass of this amount of 
hydrogen?

c If the gas density was 2.7 kg m−3, what was the volume of this amount of 
hydrogen?

23 The molar mass of carbon dioxide (CO2) is 44.0 g mol−1.

a What is the mass of one molecule?

b How many atoms are there in 1.0 g of the gas?

24 The molar mass of gold is 197 g mol−1.

a What is the mass of one atom? 

b If the density of gold is 19 × 103 kg m−3, what volume is associated with 
each atom? 

c Estimate the separation of gold atoms.

■ If there are N molecules in a sample of a substance, the number of moles, n = N

NA

.

■ The molar mass of oxygen, for example, is 32.0 g mol−1 because 32.0 g contains 
6.02 × 1023 oxygen molecules, each with two atoms. 

■ N = 
mNA

molar mass

Key concepts
The amount of a substance, 
n, is a measure of how many 
molecules (or atoms, if the 
substance is atomic) it contains.

One mole is defined as the 
amount of a substance that 
contains the same number of 
molecules (or atoms) as there 
are atoms in exactly 12 g of 
carbon-12. This number is called 
the Avogadro constant, NA, and 
equals 6.02 × 1023 mol–1.

Molar mass is defined as the mass 
of a substance that contains one 
mole (unit: g mol−1).

Figure 3.15
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dioxide
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Kinetic model of an ideal gas 
■ This very important theory of classical physics uses a simplified microscopic 

model of how molecules move in a gas to mathematically explain macroscopic 
gas behaviour, including the gas laws. This simplified model predicts the 
behaviour of an ideal gas, however real gases usually have properties very 
similar to an ideal gas (see later).

■ The following simplifying assumptions are made for the molecules in an ideal 
gas: 

 The gas is assumed to consist of a very large number of molecules that are 
identical and have negligible size.

 The molecules move around randomly because there are no forces 
between them. Their only energy is random translational kinetic energy. 
See Figure 3.16.

 Collisions between molecules and with the containing walls are elastic.

 
 Figure 3.16

■ With these assumptions we can develop a better understanding of gas pressure 
and temperature:

 Each collision of a molecule with a surface results in a tiny normal force 
on that surface. Collisions are so frequent that the average total force on a 
given area (pressure) is the same throughout the gas. Figure 3.17 represents 
the normal force resulting from a single collision.

 The mathematical connection between average random molecular transitional 
kinetic energy and temperature is EK

 = 3
2
 kBT. The term kB is called the 

Boltzmann constant, it is an important constant linking macroscopic 

temperatures to microscopic energies. Its value is 1.38 × 10−23 J K−1.
 Multiplying by the Avogadro constant, NA, gives the total random 

translational kinetic energy of one mole of any ideal gas: 3
2
 kBNAT.

 These last two equations can also be written in terms of the gas constant, 
R. See below.

Equation of state for an ideal gas
■ By analysing molecular collisions with the walls in terms of Newton’s laws 

of motion, kinetic energy of molecules and the conservation of momentum, 
the results of the gas law experiments can be confirmed from theory: pV ∝ T. 
(This proof is not required by this course.)

■ Developing the kinetic theory further leads to the equation which summarizes 
the physical properties of ideal gases: pV = nRT. This is called the equation 
of state for an ideal gas. R is known as the (universal) gas constant. It 
has the value 8.31 J K−1 mol−1. This equation can be used for real gases under 
most circumstances.

average
force

molecule

Figure 3.17

Key concept
The absolute temperature, T, of an 
ideal gas is a measure of the average 
random translational kinetic energy 
of its molecules, EK .

Common mistake

Do not forget that the temperatures 
must be in kelvin. (Temperature 
changes may be in kelvin or degrees 
Celsius.)

Expert tip

Elastic collisions between the 
molecules themselves do not need 
to be considered because they 
simply result in random changes to 
molecular velocities, with no overall 
effect.

Key concept
The  molecules in an “ideal 
gas” are all the same. They are 
considered to have negligible 
volume and to move around in 
random directions with a range 
of different speeds. No forces act 
between the molecules, except in 
(elastic) collisions.

Key concept
The equation pV = nRT describes 
the macroscopic properties of an 
ideal gas. R is known as the gas 
constant.
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■ The macroscopic constant R is closely linked to the microscopic Boltzmann 
constant, kB: R = kBNA.

■ We can then express the average random translational energy of one molecule 

of an ideal gas in terms of R: EK = R
N T3

2 A

⎛
⎝⎜

⎞
⎠⎟

.

■ Remembering that the total energy of an ideal gas is only the  random 
translational kinetic energy of its molecules,  the internal energy (U) of one 
mole of an ideal gas equals 3

2
 RT. And the total internal energy of any sample 

of an ideal gas can be determined from 3
2
 nRT.

 Differences between ideal gases and real gases
■ Usually real gases behave like ideal gases, except at extreme temperatures, and 

high pressures and densities, when the simplifying assumptions about ideal 
gases are no longer valid. 

■ An ideal gas cannot be turned into a liquid. 
■ Real gas molecules have rotational kinetic energy as well as translational 

kinetic energy.

 Solving problems using the equation of state for an 
ideal gas

■ The equation pV = nRT can be used with all real gases under most 
circumstances. Given any two of pressure, volume and temperature (in kelvin), 
the third can be calculated if the amount of gas (in moles) is also known.

QUESTIONS TO CHECK UNDERSTANDING
25 a At 15 °C what is the total random kinetic energy of: i the atoms in 

1.0 mole of helium, ii the molecules in 1.0 mole of hydrogen? 

b How much energy would need to be supplied to raise the temperature 
of 1.0 kg of helium in a fixed container from 15 °C to 16 °C? (Molar mass 
of helium is 4.0 g mol−1.)

26 a What is the average random kinetic energy of an ideal gas molecule 
at 0 °C? 

b If the mass of oxygen molecules is 5.4 × 10−26 kg, determine their 
average speed at 0 °C.

27 3.2 moles of an ideal gas has a volume of 120 cm3 at 58 °C. What pressure is 
exerted on the container?

28 The molar mass of carbon dioxide is 44.0 g mol−1. What mass of carbon 
dioxide is in a cylinder of volume 850 cm3 at 20 °C if its pressure is 2.8 times 
greater than atmospheric pressure (1.01 × 105 Pa)?

29 Suggest why real gases behave less like ideal gases at high densities and low 
temperatures.

NATURE OF SCIENCE

 Collaboration
The kinetic model of an ideal gas was not the work of one scientist working 
in isolation. Sometimes, especially in the distant past, scientifi c advance came 
as the result of the insight of a great thinker (Newton for example) but, more 
often, especially today, the development of scientifi c knowledge and ideas 
is based on the teamwork and collaboration of many individuals, each with 
specialized skills and talents.

Figure 3.17. Cylinders like these are 
used by divers. (Typically they are 
filled with air to a pressure about 
250 x atmospheric pressure and a 
volume of about 12 litres.)

Key concepts
Average random translational KE 
of one molecule = 3

2
 kBT

Average random translational KE 
of one mole of molecules = 3

2
 RT
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4.1 Oscillations
Essential idea: A study of oscillations underpins many areas of physics with 
simple harmonic motion (SHM), a fundamental oscillation that appears in various 
natural phenomena.

■ When objects move backwards and forwards about the same place they are 
said to oscillate. Oscillations occur because there are restoring forces 
pulling or pushing displaced objects back to their equilibrium positions. 

b

A

equilibrium
position

B

F

F F

F

a

   Figure 4.1

■ Figure 4.1 shows a common visualization of a basic oscillation: a mass 
between two stretched open-wound springs on a friction-free surface.  
Figure 4.1a shows the mass in its equilibrium position, where there is no 
resultant force acting on it. 

■ In Figure 4.1b the mass has been displaced to position A so that there is a 
resultant force from the springs to the right. When released, it will accelerate, 
pass through the equilibrium position (where it has its maximum speed) 
and then decelerate to a stop at B. The motion then reverses, and so on.  
(In practical situations friction will eventually bring it to rest.)

Time period, frequency, amplitude, 
displacement and phase difference 
■ One oscillation is completed after the object next returns to the same position, 

moving in the same direction. One oscillation is sometimes called a cycle.
■ Mechanical oscillations are often called vibrations.
■ The unit of frequency is the hertz, Hz. 1 Hz is one oscillation per second.
■ Period = 1 

frequency
; T = 1f

■ The amplitude of an oscillation is a measure of its energy. If an oscillator is 
given more energy its amplitude will increase.

Key concepts 
For repeated oscillations each of which take the same time, one complete 
oscillation is completed in a time called its period, T. 

The number of oscillations in unit time is known as the frequency, f.

The displacement, x, of an oscillator is defined as the distance from its 
equilibrium position in a specified direction.

Key concepts 
The amplitude is the maximum 
displacement, x0, of the oscillation.

In phase oscillators are doing exactly 
the same thing at the same time.

Similar oscillators with the same 
frequency that are not in phase 
are described as having a phase 
difference.
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Expert tip

It may be helpful to know more 
details about a particular phase 
difference. For example, two 
oscillations may be described as 
completely out of phase, which may 
also be described as a half cycle out 
of phase, or 180° or π radians out 
of phase. (Radians are discussed in 
Section 6.1). 

Simple harmonic oscillations 
■ Oscillations which maintain a constant period are described as isochronous 

(or periodic). There is a very wide variety of such oscillations and physicists have 
developed a model to represent the simplest kind: the simple harmonic oscillator.

 Conditions for simple harmonic motion 
■ If the displacement of an oscillator is doubled (for example) and, as a result, 

the restoring force also doubles, the acceleration back towards the equilibrium 
position will double (F = ma). This means that when the amplitude of such an 
oscillator is doubled it will still take the same time to complete an oscillation.

■ More generally, the simplest kind of periodic oscillation is one which occurs 
when the restoring force is proportional to the displacement (but in the 
opposite direction). This is called simple harmonic motion (SHM).

■ However, SHM is defined in terms of the oscillator rather than its cause.  
The negative sign in the SHM equation indicates that the acceleration 
is in the opposite direction to the displacement. This relationship can be 
represented by an acceleration–displacement graph as shown in the Figure 4.3.

■ The oscillations of a mass on the end of a spring for which the extension is 
proportional to the force: F = kx (see Section 2.2) should be simple harmonic.

 Sketching and interpreting graphs of simple 
harmonic motion examples 

■ Graphs of displacement–time, velocity–time and acceleration–time can be 
drawn to represent the characteristics of SHM. Such graphs are sinusoidal in 
shape. See Figure 4.4.
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Key concept 
Simple harmonic motion (SHM) 
is defined as an oscillation in which 
the acceleration, a, of an object is 
proportional to its displacement, x, 
and in the opposite direction: a  − x.

QUESTIONS TO CHECK UNDERSTANDING
1 Figure 4.2 shows two simple pendulums at the 

moment when they are released and allowed to 
swing freely. 

a Which pendulum has the greater amplitude? 

b Suggest why pendulum A has a greater time 
period than pendulum B. 

c What provides the restoring force which 
makes the pendulums oscillate? 

d Explain why it is impossible that these two 
pendulums can ever have a constant phase 
difference.

2 A mass oscillating between two springs (as in 
Figure 4.1) completes 50 oscillations in 84.7 s. 

a What is the time period of its motion? 

b What is its frequency?

3 Suggest a type of oscillation which does not keep a constant time period.

Figure 4.2

A

B

Displacement, x

Acceleration, a

–x0

–amax

amax

x0

Figure 4.3

Key concept
Any graph of displacement, 
velocity or acceleration for SHM 
has the shape of a sine wave (or 
cosine wave). Any single graph 
contains the information needed 
to draw the other two.
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■ The velocity at any moment can be found from the gradient of the 
displacement−time graph. The acceleration at any moment can be found from 
the gradient of the velocity−time graph. 

■ The acceleration and displacement graphs are half a cycle (π rad) out of phase 
with each other. The velocity graph is a quarter of a cycle (π

2 rad) out of phase 
with the other two. 

 The graphs in Figure 4.4 represent the idealized circumstances in which no 
energy is transferred to the surroundings. If there were energy transfers out of 
the system, all the amplitudes would decrease with time. Frictional forces, air 
resistance and the transferring of vibrations to the surroundings may all result 
in energy being dissipated from the oscillator.

■ Graphs like these can be used to represent any SHM, such as a mass 
oscillating on a spring, or a pendulum.

 Qualitatively describing the energy changes taking 
place during one cycle of an oscillation 

■ Figure 4.5 shows how energies change with displacement during a simple 
harmonic oscillation.

 If there was no energy transferred to the surroundings, the total energy 
(kinetic + potential) would remain constant.

■ Consider a simple pendulum as an example: at its maximum displacement 
the pendulum has its maximum gravitational potential energy, but no kinetic 
energy. As it swings towards its equilibrium position, gravitational potential 
energy is transferred to kinetic energy. At the centre of motion all of the 
pendulum’s energy is kinetic. The process is then reversed, and so on. 

■ Figure 4.6 shows the energy changes during the first half oscillation after a 
pendulum was released from its highest point.

Expert tip

An oscillator that dissipates energy 
into the surroundings, so that its 
amplitude decreases, can still keep 
the same time period.

Key concept 
All mechanical oscillations 
involve a continual interchange 
between some form of potential 
energy and kinetic energy, as 
shown in Figure 4.5.

QUESTIONS TO CHECK UNDERSTANDING
4 Figure 4.7 shows how the displacement of an oscillator varied with time. 

a Which feature of the graph suggest that this is SHM? 

b What are the time period and frequency of the oscillation? 

c Determine the maximum velocity of the oscillator.
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NATURE OF SCIENCE

 Models 
SHM is a simple model in a complicated world. We are surrounded by objects 
which oscillate, but none of them are perfect simple harmonic oscillators. The 
SHM model is a good representation of a few basic oscillators (like a pendulum), 
but it is also the essential starting place for the analysis of more complicated 
oscillating systems.

5 a Sketch a velocity–time graph for two oscillations of a pendulum 
undergoing simple harmonic motion. Start the graph at a time when the 
pendulum is at its maximum displacement. 

b Mark a point with the letter P where the pendulum is passing through 
its equilibrium position. 

c Another pendulum of the same frequency is swinging with a phase 
difference of a quarter of a cycle with the first. Represent this motion on 
the same axes.

6 a Sketch an acceleration–time graph for a perfect simple harmonic 
oscillator from a moment that it is at its maximum displacement. 

b Add a second sketch on the same axes showing how the motion 
would be affected if there was significant energy dissipation from the 
pendulum.

7 Describe the energy changes that occur during one oscillation of the simple 
harmonic oscillator shown in Figure 4.1.

4.2 Travelling waves
Essential idea: There are many forms of waves available to be studied. A common 
characteristic of all travelling waves is that they carry energy, but generally the 
medium through which they travel will not be permanently disturbed.

Travelling waves 
■ Oscillations in one part of a substance can transfer energy to their 

surroundings and, in this way, a continuous travelling wave, or a pulse 
(a wave of short duration), can travel away from its source and through the 
substance. Travelling waves are sometimes called progressive waves.

■ The substance through which the wave travels is called a medium. The 
movement of a wave away from a source may be described as propagation.
Waves involving the oscillations of masses are described as mechanical waves. 
Electromagnetic waves (see below) do not have mass and do not need a medium.

■ Travelling waves transfer energy, but it is very important to note that there is 
no net motion of the medium itself in the direction of energy transfer (it just 
oscillates).

 Waves (in one dimension) are usually first demonstrated in school by using 
long ropes and/or springs.

■ All travelling waves are one of only two kinds, depending upon the relative 
directions of their oscillations: they are either transverse or longitudinal.

Transverse and longitudinal waves 
■ Electromagnetic waves and waves on stretched strings are examples of 

transverse waves.
■ Sound is the most common example of a longitudinal wave.

Key concept 
Travelling waves transfer energy 
away from their source.
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 Explaining the motion of particles of a medium 
when a wave passes through it for both transverse 
and longitudinal cases 

■ Figure 4.8 shows the velocities of particles in a medium through which a 
transverse wave is passing from left to right. The red line represents the 
position of the wave a short time after the blue line. 

movement of energy

   Figure 4.8

■ The tops and bottoms of transverse waves are often called crests and 
troughs.

■ The motion of particles within a medium propagating a longitudinal wave is 
less easy to draw, but Figure 4.9 represents a wave being sent along a slinky 
spring. Note that the coils of the spring are oscillating parallel to the direction 
in which the energy is being propagated.

■ Places where a medium is squashed (higher pressure) are called compressions. 
Places where a medium is stretched (lower pressure) are called rarefactions.

compressions

rarefactions

movement of
energy

vibration
of coilsmotion of hand

Figure 4.9

QUESTIONS TO CHECK UNDERSTANDING
8 A table tennis ball is floating on the surface of the water in a swimming 

pool. At the other end of the pool a girl dives into the water, sending waves 
in all directions. 

a Are the waves transverse or longitudinal? 

b Describe the motion of the ball as the waves reach it.

9 When we speak we cause tiny changes to the pressure in the air. Describe, 
in terms of molecular movements, how sound travels from our throats to 
somebody’s ear. 

Wavelength, frequency, 
period and wave speed 
■ Wavelength is easily shown on a displacement–position graph (see Figure 4.10).
■ Period, T, is easily represented on a displacement–time graph (see later). T = 1

f
.

 Solving problems involving wave speed, frequency 
and wavelength 

■ Since a wave travels one wavelength in one period, c = distance
time  = T, which is 

usually written as c = f .
■ The equation c = f  can be used with all kinds of waves.

Expert tip

In order to understand the motion of 
a wave through a continuous medium 
it is convenient to imagine that it 
consists of many separate ‘particles’. 

Key concepts 
In transverse waves the 
oscillations of the medium are 
perpendicular to the direction of 
energy transfer.

In longitudinal waves the 
oscillations of the medium are 
parallel to the direction of energy 
transfer.

Key concepts 
Wavelength, , is the shortest 
distance between two points on a 
wave which are moving in phase.

The period, T, of a wave is defined 
as the time it takes for one complete 
wave to pass a given point.
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Common mistake

Figure 4.10 might appear to only 
represent a transverse wave because 
the displacement axis is perpendicular 
to the distance axis. However, the 
graph does not show the direction 
of the displacement, which could 
also be parallel to the wave direction, 
which would then represent a 
longitudinal wave.

 Sketching and interpreting displacement–distance 
graphs and displacement–time graphs for transverse 
and longitudinal waves 

■ A displacement–distance graph for a wave shows the displacement of particles of 
the medium from their mean positions, and how that varies with distance from 
a reference point (maybe the source of the waves). If the wave is transverse, the 
shape of the graph may be considered to be like a ‘snapshot’. See Figure 4.10.

■ All points on the wave are oscillating in the same way, but there are phase 
differences. As already stated, the shortest distance between two points 
moving in phase is one wavelength.
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    Figure 4.10

■ It is important to understand that this kind of graph can be used to represent 
transverse and longitudinal waves. 

■ Wavelength and amplitude are easily shown on this kind of graph.

■ A displacement–time graph for a wave shows how the displacement of a 
particular particle/location within the medium changes with time. Again, it 
may represent either kind of wave. See Figure 4.11.

■ Period and amplitude are easily shown on this kind of graph.

QUESTIONS TO CHECK UNDERSTANDING
14 Make a copy of Figure 4.10 and add a sketch to show the displacement half 

a period later.

15 Sketch a displacement–time graph to show 3 oscillations for a longitudinal 
wave of amplitude 2 cm and frequency of 5 Hz.

Key concept 
Graphs used to represent the 
displacement of a medium as 
a wave passes through it are 
sinusoidal in shape. It is easy to 
get displacement–time graphs and 
displacement–distance graphs 
confused because they look alike.

QUESTIONS TO CHECK UNDERSTANDING
10 A student was observing water waves: six wave crests passed a certain point 

in 5.4 s. The distance from the first wave crest to the sixth was 4.80 m. 

a What was the wavelength of the waves? 

b Calculate the wave’s speed.

c Determine the frequency of the wave.

11 The frequency of the musical note middle C is 262 Hz. If the speed of sound 
in air is 335 m s−1, what is the wavelength of this note? 

12 A long stretched spring was shaken from side to side at a rate of 3.0 
oscillations every second. It was estimated that the wavelength of the waves 
that travelled along the spring was about 40 cm. 

a What kind of wave was sent along the spring? 

b Estimate the speed of the wave. 

c As the wave travelled it transferred some energy to the surroundings. 
How did this affect the wave? 

d If the same spring was stretched more, it was found that the wave 
speed increased. Suggest a reason for this.

13 Light travels as a wave, but it has a very high frequency, typically 5 × 1014 Hz. 
Determine an order of magnitude for the wavelength of light waves if they 
travel at a speed of 3 × 108 m s−1.

Expert tip

Amplitude is another important 
measurable property of a wave. 
As with oscillations, amplitude 
means maximum displacement, 
and a greater amplitude means 
more energy. We will see later that 
amplitude is related to the intensity 
of a wave.

0
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Time

x0

–x0

Figure 4.11

Key concepts 
The frequency, f, of a wave is 
defined as the number of waves that 
pass a given point in unit time.

Wave speed, c, is defined as the 
distance travelled by a wave in 
unit time. 
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The nature of electromagnetic waves 
■ The waves of the electromagnetic spectrum are very important in physics. 

Of course, we are most familiar with a small part of the overall spectrum, 
visible light, which has a continuous range of colours from red to violet. See 
Figure 4.44 in Section 4.4 for how a triangular prism creates a spectrum from 
white light.

 

direction of
wave travelmagnetic field oscillation

electric field oscillation

    Figure 4.12

■ All electromagnetic waves travel across free space (vacuum) at the same 
speed, c = 3.00 × 108 m s−1. The speed in air is almost the same as the speed 
in free space. When the waves travel in other mediums (media) their speed is 
less. 

■ The electromagnetic spectrum contains waves of very different wavelengths, 
sources and properties. The main sections of the electromagnetic spectrum, 
with their approximate wavelengths are listed in Table 4.1.

Table 4.1

Name A typical wavelength Origins Some common uses

radio waves 102 m electronic circuits/aerials communications, radio, TV

microwaves 10–2 m electronic circuits/aerials communications, mobile phones, ovens, radar

infrared (IR) 10–5 m everything emits IR but hotter objects 
emit much more IR than cooler things

lasers, heating, cooking, medical treatments, 
remote controls

visible light 5 × 10–7 m very hot objects, light bulbs, the Sun vision, lighting, lasers

ultraviolet (UV) 10–8 m the Sun, UV lamps fl uorescence

X-rays 10–11 m X-ray tubes medical diagnosis and treatment, 
investigating the structure of matter

gamma rays 10–13 m radioactive materials medical diagnosis and treatment, sterilization 
of medical equipment

Key concept 
All electromagnetic waves 
consist of oscillating electric 
and magnetic fields which are 
perpendicular to each other and do 
not need a medium through which 
to travel. See Figure 4.12

Expert tip

Electromagnetic waves from different 
parts of the spectrum can have very 
different properties, including their 
effects on the human body. In order 
to explain many of these properties 
we need to consider the energy that 
they each transfer and this requires a 
knowledge of the quantum nature of 
radiation (see Chapter 7).

QUESTIONS TO CHECK UNDERSTANDING
16 A mobile phone (such as in Figure 4.13) uses microwaves of frequency 

1900 MHz. 

a What is the wavelength of these signals? 

b State one property of microwaves that is different from light.

17 Infrared radiation is emitted by all objects. Suggest two properties of an 
object which affect the power of the infrared that it emits. 

18 Which type of electromagnetic radiation has the highest frequency and 
what is its origin?

19 Astronomers learn much about the universe from radio waves received 
on Earth. A common wavelength from hydrogen is 21 cm. What is the 
frequency of this radio wave in MHz?.

Figure 4.13
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The nature of sound waves 
■ Sound cannot travel across a vacuum.
■ Sound is created when a surface vibrates (oscillates) and disturbs the air that 

surrounds it, producing a series of compressions and rarefactions that travel 
away from the surface as a longitudinal wave. 

R C R

R = rarefaction   C = compression

C R

wavelength, λ

C R

oscillation of molecules

loudspeaker

Figure 4.14

■ Figure 4.14 represents a sound wave travelling in air away from the surface 
of a vibrating loudspeaker. A series of compressions and rarefactions are 
superimposed on the random motions of air molecules.

■ As a sound wave passes through air it causes tiny variations in pressure and 
density.

■ The loudness of a sound depends on the amplitude of the wave. The pitch of 
a sound depends on the frequency of the wave. The range of hearing of the 
human ear is approximately 20 Hz to 20 kHz. Higher frequencies are described 
as ultrasonic.

 Figure 4.15 represents two different sound waves. The upper one is a louder 
and higher-pitched sound than the lower one. 

■ Sound travels much faster and with less absorption through solids and liquids 
than through air. This is because the molecules are closer together and have 
forces between them.

 Investigating the speed of sound experimentally 
■ Determining the speed of sound requires the use of short, sharp sounds 

and the measurement of small time intervals, which may involve large 
uncertainties unless the timing can be done electronically. 

■ If hand-held stopwatches are used, large distances will be needed for this type 
of experiment to reduce percentage uncertainties, and/or reflections of sound 
off large flat surfaces may be useful (echoes).

■ Conversely, if the speed of sound in a material is known, the delay involved with 
echoes can be used to determine distances (echo sounding).

QUESTIONS TO CHECK UNDERSTANDING
20 Describe an experiment to determine the speed of sound in air.

21 Four students started stopwatches when they saw a drum being struck a distance of 180 m away. They stopped their 
watches when they heard the sound. The times were 0.72 s, 0.44 s, 0.58 s and 0.43 s. 

a Why were the times different? 

b Estimate the speed of sound in air from these results.

22 The speed of sound in air at 0 °C is 331 m s−1, but at 40 °C the speed is 353 m s−1. 

a Suggest a reason for the difference. 

b The lowest pitched sound that a student could hear was 15 Hz. What is the wavelength of this sound i at 0 °C, ii at 40 °C?

23 a Suggest a reason, other than temperature, why the speed of sound in sea water may vary. 

b A sound pulse was transmitted downwards from the bottom of a boat. A strong signal was received back after 
0.310 s. How deep was the sea beneath the boat? (Assume that the speed of sound in the water was 1490 m s−1.) 

c Why are short pulses of sound used for this kind of measurement (rather than continuous waves)?

Expert tip

Sound waveforms may be observed 
using a microphone connected to an 
oscilloscope. 
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Figure 4.15

Key concept
Sound is a longitudinal wave 
transferred by oscillating molecules, 
so that it needs a medium through 
which to travel. 
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NATURE OF SCIENCE

 Patterns, trends and discrepancies 
We know now that sound, light, X-rays, thermal radiation, disturbances from 
earthquakes (and many other examples) behave in some ways that are very 
similar. But, historically, it took a long time before the wave nature of all these 
phenomena was fully recognized. Expertise in one area of knowledge of science 
may well be transferrable to another. So that, a major aspect of science is looking 
for such simplicity by detecting patterns and trends in observations. 

4.3 Wave characteristics
Essential idea: All waves can be described by the same sets of mathematical ideas. 
Detailed knowledge of one area leads to the possibility of prediction in another.

Wavefronts and rays 
■ On paper we represent waves with lines called wavefronts. For example a line 

joining points along the crest of a wave. 
■ Adjacent wavefronts are one wavelength apart.
■ A line showing the direction in which wavefronts are moving is called a ray.

Rays are always perpendicular to wavefronts.
■ A ray coming into a surface/boundary is called an incident ray.

 Sketching and interpreting diagrams involving 
wavefronts and rays

parallel
rays

plane
wave fronts

Figure 4.16

■ If wavefronts are straight and parallel to each other they can be described as 
(idealized) plane waves. The movement of plane waves is represented by 
parallel rays. See Figure 4.16.

■ Circular wavefronts are represented by radial rays spreading out from the source 
of the waves. See Figure 4.17.

 School laboratories often use small ripple tanks to demonstrate the behaviour 
of wavefronts on the surface of water. 

■ The concepts of wavefronts and rays are used extensively in explaining the 
behaviour of all waves (see later).

Amplitude and intensity 
■ Because we are usually concerned with waves that are continuously emitted or 

received, it is unusual to discuss the energy of a wave. We are much more likely 
to be concerned with wave power (energy transferred/time). 

■ Typically, the power of waves spreads out in three dimensions, so that the 
concept of power passing through, or arriving at, unit area becomes very useful. 
This is called the intensity, I, of a wave and it has the unit W m−2.

■ The property of a wave itself that is related to intensity is wave amplitude. For 
example, a wave with 3 × the amplitude of another similar wave is transferring 
32 = 9 × the power per square metre (intensity).

Key concept
Intensity, I, is defined as the 
power passing perpendicularly 
through unit area, ==I

P
A

. 
The intensity of a wave is 
proportional to the amplitude 
squared: I  A2.

circular
wavefronts
spreading in
all directions

radial rays showing the
directions in which the

waves are moving

Figure 4.17

Key concepts 
A wavefront is a line joining 
points next to each other that are 
moving in phase.

Lines showing the direction in 
which wavefronts are moving are 
called rays.
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■ The relationship between intensity and amplitude can be expressed as IA2 = constant.

Expert tip

If waves strike a surface at an angle of less than 90°, they will be spread over a 
greater area and the received intensity will be reduced.

Common mistake

In this topic it is possible to confuse two quantities which are given the same 
symbol (A): area and amplitude.

Inverse square law 
■ It is common to want to know how the intensity of a wave changes as it moves 

away from a source. For example, how the intensity of light changes with 
distance from the lamp emitting it, or how sound level varies with distance 
from a loudspeaker.

■ For simplicity, we will assume that the waves come from a point source and 
spread equally in all directions (in three dimensions) without any absorption 
(energy dissipation).

Expert tip

In reality, many waves are not emitted equally in all directions. This may be 
because of the size or shape of their source, or because some kind of reflectors 
are used to send the waves in a particular direction, or because the waves are 
not travelling in three dimensions. Nevertheless, the inverse square law is a very 
important starting point in an understanding of wave intensities.

■ Figure 4.18 shows three imaginary spheres around a point source, P, of waves 
at distances x, 2x and 3x. The surface area of any sphere is 4πr2, so the surface 
areas of these three spheres are 4πx2, 16πx2 and 36πx2. More simply, the areas 
are in the ratio 1 : 22 : 32. If the intensity of the waves passing through the first 
sphere is I, the intensity at the second is I

22
 and at the third the intensity is I

32.

P

point
source

I

2x

x

3x

  22
I

  32
I

Figure 4.18

■ The relationship-between intensity and distance can be expressed as  
Ix2 = constant.

■ Figure 4.19 shows a simplified numerical example of a graph of intensity–
distance for an inverse square law relationship (arbitrary units).

■ Figure 4.20 shows the same data used to produce a straight-line graph.

Key concept
The inverse square law: for 
waves spreading out equally in 
three dimensions from a point 
source without any loss of energy, 
their intensity, I, is inversely 
proportional to the distance from 
the source, x, squared: I  x–2.
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 Solving problems involving amplitude, intensity and 
the inverse square law 

QUESTIONS TO CHECK UNDERSTANDING
24 The intensity of radiation falling normally on a solar heating panel was 

520 W m−2. If the area of the panel was 4.2 m2, how much energy arrived in 
one hour?

25 a If the amplitude of a wave increases by 25%, what is the corresponding 
increase in intensity? 

b If the intensity of a wave drops to 10% because of energy dissipation, 
what has happened to its amplitude?

26 An electrical generator designed to transfer energy from sea waves 
produces an output power of 10 kW when the average wave amplitude is 
2.0 m. Estimate the output when the wave amplitude falls to 1.5 m.

27 The distance of Mars from the Sun is about 1.5 × the distance of the Earth 
from the Sun. How much greater is the intensity of solar radiation arriving at 
Earth, compared to Mars?

28 Give two reasons why the inverse square law cannot be used to accurately 
predict the sound levels at varying distances from a television set in a living 
room.

29 A man is looking at a map at night using only the light from a street lamp 
30 m away. Assuming that the lamp emits equally in all directions, how far 
would he have to walk towards the lamp in order for the light intensity to 
double?

Superposition 
■ When two, or more, waves (or pulses) arrive at the same point, the result can 

be predicted by adding (superposing) the waves together.
■ The superposition of waves is important because only waves pass through each 

other and combine in this way.

 Sketching and interpreting the superposition of 
pulses and waves 

■ Most commonly, examples of superposition involve wavefronts from two 
sources, like A and B in Figure 4.21, crossing and passing through each other 
at any point (P).

■ Figure 4.22 shows possible displacement–time graphs for the waves from A and 
B, together with the resultant wave formed at P.

  

1
4

16

64

84210

In
te

ns
ity

,I

Distance, x

Figure 4.19

1
4

16

64

In
te

ns
ity

,I

Distance2

 82
1

  42
1

  22
1

  12
1

1

Figure 4.20

Key concept 
Principle of superposition: the 
overall displacement at any point 
at any time will be the vector 
sum of all the individual wave 
displacements.
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■ In this general example we have considered waves of different frequency and 
amplitude, but the most important application of the superposition principle 
involves waves of the same frequency and similar amplitudes: see the topic of 
interference in Section 4.4.

QUESTIONS TO CHECK UNDERSTANDING
30 Figure 4.23 shows two idealized pulses on a stretched rope moving towards 

each other. Use the principle of superposition to draw the waves after 

a 2 s    b   2.5 s    c   4 s.

pulse A pulse B

50 cm s–1 50 cm s–1

0 1.0 m 2.0 m 3.0 m 4.0 m

Figure 4.23

31 a On the same displacement–time axes (0–2 s), carefully sketch two 
sinusoidal waveforms to represent:

 i a wave of amplitude 3.0 cm and frequency 2 Hz

 ii a wave of amplitude 2.0 cm and frequency 1 Hz. 

b Use the principle of superposition to sketch how these two waves would 
combine if they met at a point.

Polarization 
■ Consider sending transverse waves along a stretched rope, as in Figure 4.24. 

In principle, you could create the transverse waves by shaking your hand in 
any direction which was perpendicular to the rope. However, in practice, 
you would probably only shake the rope in one plane. Figure 4.24 shows two 
examples: oscillations in the vertical and horizontal planes.

rope

horizontal oscillations

vertical oscillations

  Figure 4.24
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■ When the oscillations of a transverse wave all occur in the same plane, the 
wave is described as being polarized. The plane in which the oscillations occur 
is called the plane of polarization.

■ Note that it is impossible for longitudinal waves to be polarized because their 
oscillations are always in the same direction as energy transfer.

 The most important examples of polarization are those which involve 
electromagnetic waves. Refer back to Figure 4.12. Electromagnetic waves 
consist of oscillating electric and magnetic fields perpendicular to each 
other. Because they are transverse waves, both of these oscillations are also 
perpendicular to the direction of energy transfer.

 When discussing oscillations within an electromagnetic wave we usually 
concentrate our attention on the variations of the electric field vector.  
Figure 4.12 only shows one direction of oscillation for this vector (horizontal), 
so it is representing a polarized wave.

■ Most electromagnetic waves are emitted from their sources in a random and 
uncontrolled way, so electromagnetic waves are usually unpolarized. That is, 
they contain a mixture of all possible planes of polarization.

 Describing methods of polarization 
■ Light is normally unpolarized because oscillations occur in all possible 

directions. If we wish to produce plane polarized light from normal light we 
need a method which removes the oscillations in other planes.

■ A polarizing filter absorbs the energy of oscillations in all planes but the plane 
of polarization. See Figure 4.25. 

 

unpolarized light
intensity, I

polarizer

plane polarized
light

I
2

intensity,

   Figure 4.25

■ If the polarized light is then passed through a second polarizing filter (often 
called an analyser), the intensity of the transmitted light will be zero if the 
filters are crossed, and remains almost unaltered if the filters are aligned. See 
Figure 4.26.
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  Figure 4.26 

■ Figure 4.27 shows the effect of looking through two polarizing filters. In Figure 
4.27a the filters are aligned, in Figure 4.27c the filters are crossed and no light 
can pass through, and in Figure 4.27b some light is absorbed (depending upon 
the angle, ).

Key concept 
Unpolarized light can be polarized 
by passing it through a polarizing 
filter (also called a polarizer).

Key concept 
If the oscillations transferring a 
transverse wave are all in the same 
plane, the wave is said to be plane 
polarized.

Expert tip

Artificially produced radio waves and 
microwaves are polarized because of 
the controlled way in which they are 
made: the electric currents producing 
them flow (through aerials) only in 
certain directions.
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  Figure 4.27

■ Unpolarized light will also become partially polarized when it is reflected off 
an insulator such as glass or water. The amount of polarization depends on the 
material involved and the angle of incidence. See Figure 4.29 below.

■ Light reflected off various surfaces can be viewed through a rotated polarizing 
filter (analyser). Any change in received intensity indicates that the reflected 
light is polarized to some extent.

 Sketching and interpreting diagrams illustrating 
polarized, reflected and transmitted beams 
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■ Figure 4.28 shows how the transmitted intensity through two polarizing filters 
changes as one of them is rotated. is the angle between the transmission axes 
of the two filters. If  = 0° or 180° the filters are aligned, and if  = 90° or 270° 
the filters are crossed. This behaviour is described mathematically by Malus’s 
law (see below).

■ When unpolarized light is incident from air upon a transparent medium 
(like glass or water) some of the light is reflected and some of the light is 
transmitted as a refracted beam (see Section 4.4 for details about refraction). 
The reflected beam will always be polarized to some extent, with the electric 
field vectors parallel to the surface. The transmitted beam must contain the 
light which was not reflected, so it too must be polarized to some extent, but in 
a plane perpendicular to the surface. See Figure 4.29a.
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Figure 4.29

Expert tip

A polarizing filter contains long chain 
molecules parallel to each other 
in one direction. If an electric field 
vector within an electromagnetic 
wave is aligned with the molecules, 
energy will be absorbed. The 
plane of polarization produced is 
perpendicular to the plane of the 
molecules.

Key concept 
Light may become polarized to 
some extent when it reflects off (or 
passes through) certain insulators.



4 Waves60

■ At a certain angle of incidence for light passing from air into a particular 
medium, the reflected beam is completely plane polarized. This occurs when 
the reflected and transmitted wavefronts (and rays) are perpendicular to each 
other. See Figure 4.29b.

Expert tip

The angle of incidence for which the reflected beam is totally polarized is called 
the Brewster angle.

 Solving problems involving Malus’s law 
■ Malus’s law mathematically describes the variation of intensity as plane 

polarized light passes through a rotating polarizing filter: I = I0 cos2 θ, where 
I0 is the incident intensity, I is the transmitted intensity and θ is the angle 
between the plane of polarization of the incident light and the axis of 
transmission for the filter. (See Figure 4.28 for graphical representation.) 

QUESTIONS TO CHECK UNDERSTANDING
32 a Explain why light can be polarized but sound cannot. 

b Explain why light waves are not usually polarized.

33 Unpolarized light of intensity I is passed through two polarizing filters. If the 
axes of transmission for the two filters are at 40° to each other, 

a what is the light intensity between the filters? 

b What light intensity is transmitted by the second filter? 

34 a A student discovers that a ray of light reflected from a glass block is 
completely plane polarized when the refracted ray makes an angle of 
33° with the normal. At what angle to the normal (in air) is the ray 
incident upon the block? 

b What is the refractive index of the glass? 

c In which plane is the reflected wave polarized? 

d Describe how the student could have determined that the reflected ray 
was completely polarized.

35 Explain why photographers sometimes like to use polarizing filters in front 
of their camera lenses.

36 When polarized light is passed through some chemical solutions the plane 
of polarization is changed (rotated). See Figure 4.30. If the intensity is I 
before the solution is placed in the beam and 0.9I after the sugar is placed 
in the beam, estimate the angle of rotation.
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  Figure 4.30

Key concept 
Malus's Law can be used to 
predict the intensity of light which 
emerges from an analyzing filter:  
I = I0 cos2 θ. 
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NATURE OF SCIENCE

 Imagination
The importance of imagination in scientific and technological advances 
is often undervalued compared with other human endeavours. It may 
seem as if scientific knowledge is just out there awaiting discovery in 
due course and, when we look back with today’s knowledge, the theories 
of great scientists of the past may seem unsurprising, almost obvious. 
But such hindsight belittles the work of great thinkers who used their 
imagination to think in ways different from their contemporaries.

Imagination flourishes when stimulated by interesting and unexplained 
observations, such as the polarization of light passed through certain crystals, 
which was first seen over 1300 years ago.

4.4 Wave behaviour
Essential idea: Waves interact with media and each other in a number of ways 
that can be unexpected and useful.

■ All waves reflect, refract, diffract and interfere under suitable conditions. We 
will consider each of these properties in Section 4.4.

Reflection 
■ The reflection of light is a topic usually well covered in early physics classes 

using the concept of light rays. To summarize: when a light ray strikes a plane 
(straight) surface, the angle of incidence, i, is equal to the angle of reflection, r, and they are in the same plane (law of reflection). See the ray diagram 
in Figure 4.31. Note that the angles are measured to a ‘normal’: an imaginary 
line perpendicular to the surface.

reflected rayincident ray

normal

angle of reflection

reflecting
surface

angle of incidence

  Figure 4.31

 Sketching and interpreting incident and reflected 
waves at boundaries between media 

■ However, remember that rays are only lines showing the direction in which 
wavefronts are travelling, so that we also need to be able to represent reflection 
by wave diagrams. See Figure 4.32.

incident
waves

reflected
waves

ir boundary
angle i = angle r

Figure 4.32

■ Reflection can occur when any wave meets a boundary between two different 
materials. The reflection of light is just the most common everyday example.

angle i = angle r

Key concept 
When wavefronts reflect off 
a plane surface the angle of 
incidence equals the angle of 
reflection.
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 Solving problems involving reflection at a plane 
interface 

■ We are only concerned here with the reflection of plane waves from plane 
surfaces.

Expert tip

We can see objects because their surfaces reflect light into our eyes. This diffuse 
and irregular kind of reflection (scattering) of light is more difficult to analyse 
than the plane waves and surfaces discussed here.

Expert tip

Waves are reflected with a phase change of half a wavelength (π radians) from 
a boundary with a medium into which they cannot pass, or in which they travel 
slower. (This information is needed later.) Consider the one-dimensional example 
shown in Figure 4.33.

incident wave

reflected wave

fixed
boundary

 Figure 4.33

QUESTIONS TO CHECK UNDERSTANDING
37 The structure shown in Figure 4.34 has been built along the side of a  

motorway. Suggest its purpose.

 

  Figure 4.34

38 Figure 4.35 shows the location of wing mirrors on the side of a car. Make 
a quick copy of the diagram and use it to explain why the mirrors used are 
not plane mirrors.

39 Figure 4.36 shows some wavefronts striking a plane mirror. The dotted 
lines shows where the wavefronts would be if the mirror was not in their 
path. Copy the diagram and show the actual positions of these four 
reflected wavefronts.

Figure 4.35

 

Figure 4.36

mirror
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Refraction 
■ In general, when waves are incident upon a boundary between two different 

media, apart from being reflected, some of the wave energy may also be 
transmitted into the second medium. The wave speeds in the two media will 
probably be different. However, the wave frequency cannot change.

■ If, for example, the wave speed decreases in the second medium, the 
wavelength must also decrease. This is because c = f  and f is constant.

■ When waves are transmitted obliquely (not perpendicularly) into a different 
medium the change of speed results in a change of direction which is called 
refraction. 

 Sketching and interpreting incident and transmitted 
waves at boundaries between media 

■ Figure 4.37 shows waves being refracted as they pass into a medium where they 
travel slower (for light such a material is often described as an optically denser 
medium). Under these circumstances the ray is refracted towards the normal.

incident
waves

refracted
waves

waves
travelling

faster

waves
travelling
slower

normal

boundary

  Figure 4.37

■ The amount of refraction depends on how much the wave speed has changed.
■ The refractive index, n, of a medium is a constant which indicates how much 

the medium will refract light that enters into it from a vacuum. The values 
of refractive indices depend on how much the speed of light changes as light 
enters different mediums from vacuum.

■ For example, the refractive index of a certain kind of glass might be 1.5 because 
the speed of light in that glass is 2.0 × 108 m s−1. The refractive index of air is 1.0.

 Snell’s law
■ This law links the angles of incidence and refraction to the speeds of the 

waves. Consider Figure 4.38.
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Key concept 
When plane waves enter a medium 
where they travel slower, they are 
refracted towards the normal (and 
vice versa).

Key concept 
Refractive index of a medium,  
n = speed of waves in vacuum  
(3.0 × 108 m s−1)/speed of waves  
in the medium.

Key concept 
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Figure 4.38
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 Determining refractive index experimentally 
■ Look at Figure 4.38a again. If medium 1 is air and medium 2 is the material 

under investigation, then n2, the refractive index of medium 2, can be found 

from n2 = sin θ1

sin θ2
. The refractive index of a medium can be found from 

measurement of the angles of incidence and refraction. This is usually done by 
tracing rays through a parallel-sided glass block. See Figure 4.39.

 Solving problems involving Snell’s law 

θ1

θ2

θ2

θ1

Figure 4.39

QUESTIONS TO CHECK UNDERSTANDING
40 Describe an experiment to determine the refractive index of glass.

41 Light travelling in water strikes the surface from below. Some waves are 
reflected and some are refracted. Draw a sketch to show how four separate 
wavefronts are affected by reflection and refraction at the surface.

42 Light enters a flat surface of a plastic block at an angle of incidence of 38°. The 
plastic has a refractive index of 1.41.

a What is the speed of light in the plastic?

b What is the angle of refraction in the plastic?

43 (Monochromatic) light enters a triangular glass prism at an angle of incidence 
of 42° as shown in Figure 4.40. 

a If the angle of refraction was 26°, what was the refractive index of the 
glass? 

b Determine the angle .

44 Figure 4.41 shows a ray of light passing through parallel layers of glass and a 
transparent plastic. 

a Does the light travel faster in the glass or the plastic? 

b Determine the angle of incidence, i.
45 Refraction occurs when wave speeds change. Suggest how light and sound 

waves may be affected by passing into the air above a hot surface.

θ42�

60�

60� 60�

Figure 4.40

glass n = 1.58

n = 1.43plastic

i

38�

Figure 4.41

Key concept 
When light in incident upon a 
boundary with a medium in which 
it would travel slower, it will be 
totally internally reflected if the 
angle of incidence is greater than 
the critical angle.

Critical angle and total internal reflection 
■ When light travelling in an optically denser medium strikes a boundary 

with a less optically dense medium (lower refractive index) it may be totally 
internally reflected, so that no light is transmitted out of the medium. A 
common example is light travelling in glass surrounded by air.

■ Figure 4.42 illustrates light rays in an optically denser medium with different 
angles of incidence on the boundary. At a certain angle, called the critical 
angle, the angle of refraction is 90° and the refracted ray travels parallel to 
the boundary.

■ For angles of incidence greater than the critical angle the light is totally 
internally reflected.

 

medium 1

more optically dense

less optically dense

medium 2

θ1

θc

θ2

  Figure 4.42
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 Solving problems involving critical angle and total 
internal reflection 

■ When the angle of incidence is the critical angle, c, the angle of refraction is 

90° and its sine is 1. So that Snell’s law reduces to: sin c = n2
n1

, where n1is the 
refractive index of the optically denser medium.

QUESTIONS TO CHECK UNDERSTANDING
46 The critical angle for light within a certain plastic surrounded by air is 39°. 

a What is the refractive index of the plastic? 

b If the plastic was placed in water, would its critical angle increase, 
decrease or stay the same?

47 The speed of light in water is 2.25 × 108 m s−1 and in a certain kind of glass it 
is 1.95 × 108 m s−1. 

a What is the critical angle between these two media? 

b In which medium would light have to be travelling in order to be totally 
internally reflected?

48 Draw a curved ‘light pipe’ transmitting a totally internally reflected ray of light.

Dispersion of light by a prism 
■ Although all electromagnetic waves have the same speed in air, different 

colours of light have very slightly different speeds in other media. This means 
that they also have slightly different refractive indices.

■ As a result, different colours will follow slightly different paths through a prism 
and this results in the dispersion of white light into a spectrum, as shown in 
Figure 4.44.

 

white
screen

spectrumprismwhite light

  Figure 4.44

Diffraction through a single 
slit and around objects 
■ Diffraction is the spreading of waves as they pass through gaps and around 

obstacles. All types of waves can diffract under suitable circumstances. 
Waves diffracting on the surface of water is a common sight.

■ Figure 4.45 shows some examples of the diffraction of plane waves. 
These patterns are commonly demonstrated on ripple tanks in school 
laboratories.

gap ≈ λ gap > λ

Figure 4.45

Figure 4.43

Key concept 
Diffraction is most significant 
when the gap or obstacle size 
is similar in magnitude to the 
wavelength, see Figure 4.45

Expert tip

Total internal reflection is used in 
endoscopes and in the optic fibres 
used for transferring data (see 
Figure 4.43).
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■ Apart from water waves, the diffraction of sound is also easy to 
demonstrate. Sound can ‘go around corners’ because it has wavelengths 
that are similar to the size of common objects. Of the waves of 
electromagnetic spectrum, the diffraction of microwaves (with wavelengths 
of a few centimetres) through a slit between metal sheets is a common 
laboratory demonstration.

 Qualitatively describing the diffraction pattern 
formed when plane waves are incident normally  
on a single slit 

■ The diffraction of light is less easy to observe because light has a very small 
wavelength (≈ 5 × 10−7 m). However, a diffraction pattern can easily be 
produced by passing laser light through a very narrow gap. See Figure 4.46.

■ The central band is broadest and brightest. To begin to understand the pattern 
we need to realize that even the narrowest slit is many times wider than the 
wavelength of light. 

QUESTIONS TO CHECK UNDERSTANDING
49 When sound is received from a source which is about 100 m or more away, 

explain why low-frequency sounds will probably be easier to hear than 
high-frequency sounds.

50 A mobile phone company uses a frequency of 1900 MHz. Estimate the size 
of an emitting aerial which will ensure that the waves spread out well from 
their source in the tower.

51 Diffraction is to be demonstrated in the laboratory by observing how waves 
on water in a ripple tank pass through a gap of width 1 cm. If the speed of 
the waves is 20 cm s−1, what frequency would be needed for the greatest 
diffraction effects?

52 a How would the diffraction pattern shown in Figure 4.46 change if the 
slit was made narrower? 

b Suggest how the pattern would change if the monochromatic light was 
changed to a white light source.

Expert tip

An explanation of the single-slit diffraction pattern of light requires a knowledge 
of interference (see next sub-section). If the narrow slit was, for example, 100× 
the wavelength of light, then we may imagine that there are 100 sources of 
coherent circular wavelets diffracting away from the slit. These wavelets then 
interfere to produce the ‘diffraction’ pattern. There is a fuller explanation of this 
in Chapter 9 for HL students.

Interference patterns 
■ Under certain circumstances, when wavefronts spread away from two sources 

and then pass through each other, they can combine to produce a pattern 
which stays constant in time. This is called an interference pattern. 

■ Figure 4.47 shows wavefronts spreading away from two sources S1 and S2. 
Interference effects may be observed in the shaded area.

■ In this section we will discuss only the relatively simple situations in which 
two sources emit waves of the same frequency which have a constant phase 
difference (this usually means that the waves are always emitted in phase, 
or always completely out of phase). Such sources are described as being 
coherent. Coherent sources are needed to produce an interference pattern.

■ We have already seen how to use the principle of superposition to determine 
the resultant of two waves arriving at the same point from different sources. 
However, waves from two sources received at different points will not generally 
superpose in the same way (at the same time). This is why an interference 
pattern is produced.

Key concept 
The diffraction of monochromatic 
light through a narrow slit 
produces a pattern of light and 
dark bands perpendicular to the 
orientation of the slit. 

Figure 4.46

Key concept 
An interference pattern is produced 
when waves from two coherent 
sources combine constructively in 
some places and destructively in 
other places.
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■ If waves arrive in phase at a point, superposition will produce a wave of greater 
amplitude (double the amplitude if the waves were identical). This is called 
constructive interference. See Figure 4.48a. Figure 4.48b shows the effect 
of waves arriving completely out of phase: the resulting amplitude will be much 
reduced and would be zero if the waves had exactly equal amplitudes. This is 
called destructive interference. At most places the waves will not arrive 
perfectly in phase or perfectly out of phase, but the waves still interfere.
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  Figure 4.48

 Path difference 
■ In order to predict or explain the shape of an interference pattern we need to 

compare the distances travelled by wavefronts from the two sources.
■ Consider again Figure 4.47. The result of superposition at, for example, point A 

and point B will be different because the distances (S1A–S2A) and (S1B–S2B) 
are different. The difference between these two distances is known as their 
path difference

■ Figure 4.49 shows the path differences involved with fi ve maxima.
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Figure 4.49

■ The shape of the interference pattern produced by these conditions (in two 
dimensions) is shown in Figure 4.50. This is often demonstrated on a ripple tank. 
The line marked C0 joins places where the path difference is zero, the line marked 
C1 joins places where the path difference is one wavelength, the line marked D1

2
 

joins places where the path difference is half a wavelength, the line marked D3
2

 
joins places where the path difference is one and a half wavelengths, etc.

C0C1C2

constructive
interference 

destructive
interference 

D1
 2

D3
 2

  Figure 4.50

Key concept
Path difference is the difference 
in distance travelled by two waves 
from their sources to a given point.

Constructive interference occurs 
when path difference = a whole 
number of wavelengths (n ).

Destructive interference occurs 
when path difference = an odd 
number of half wavelengths 
(n + ½) .

S1

A

B

S2

Figure 4.47

Common mistake

Two waves combining to give no 
waves may seem to contradict 
the principle of conservation of 
energy, but in other places the wave 
amplitude is doubled, which suggests 
four times the intensity (Section 4.3: 
wave intensity is proportional to 
amplitude squared). Overall, energy is 
conserved.
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Observing interference patterns 
with different types of wave 
■ The interference of waves is not an everyday observation because wave sources 

are not usually coherent.
■ Interference patterns with sound can easily be produced by using two 

loudspeakers connected to the same signal generator. If the frequency is 
adjusted to give a suitable wavelength, we can detect the pattern by moving 
around. This is best done outside, away from reflecting surfaces. See Figure 4.51.
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Figure 4.51

 Double slit interference
■ The interference of microwaves ( ≈ 3 cm) can be demonstrated by effectively 

creating two coherent sources by putting two 3 cm slits in front of a single 
microwave source. Because the slit width is about the same as the wavelength, 
the diffracted wavefronts emerging from the slits in a horizontal plane will be 
semi-circular. These waves will then overlap and interfere. See Figure 4.52.

■ If an observer/detector moves directly between two coherent sound or 
microwave sources, or between a single source and a reflector, maxima will 
be detected by moving half a wavelength. This can be used to determine the 
wave speed if the frequency is known.

■ The interference of light can be demonstrated in an experiment similar in 
principle to that described for microwaves above. See Figure 4.53.
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Figure 4.53

■ Figure 4.54 shows the experimental arrangement: monochromatic laser 
light provides an intense and suitable light source (but it is not essential). 
Monochromatic means consisting of only one wavelength (colour). More 
details of this experiment are provided in Section 9.3 (HL).
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Figure 4.52
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Figure 4.54

■ A pattern of (almost) equally spaced bright and dark ‘fringes’ is seen in the 
centre of a screen. The pattern can only be explained in terms of wave 
superposition. This experiment has great historical signifi cance because, 
when the interference of light was observed (by Young), it provided the fi rst 
experimental proof that light travelled as waves. The wavelength of light can 
be determined from suitable measurements. See below.

 Quantitatively describing double-slit interference 
intensity patterns 

■ Figure 4.55 shows the basic geometry of the experiment. An unknown 
wavelength can be determined by measuring the average separation of the 
centres of the fringes, s, and using the following equation: 

s = kD
d

, where D is the slit-to-screen distance and d is the distance between 
the centres of the slits.

double slit
slit-to-screen distance, D

not to scale

d

s

  Figure 4.55

Common mistake

Single-slit diffraction patterns of light 
are easily confused with double-slit 
interference patterns. But, in a single 
slit diffraction pattern the central 
band is brighter and wider than the 
others.

QUESTIONS TO CHECK UNDERSTANDING
53 a Explain why two separate light sources cannot be used to produce an interference pattern. 

b Why are monochromatic light sources often preferred for interference experiments? 

c In a double-slits light experiment the two slits were half a millimetre apart and they produced a fringe pattern in 
which the distance across 10 fringes was measured to be 1.9 cm on a screen which was placed 1.98 m from the slits. 
Calculate the wavelength used.

54 A student walks slowly between two loudspeakers which are facing each other and both emitting sound of wavelength 
1.20 m. 

a What is the shortest distance that a student has to walk to move between two positions of minimum intensity? 

b Why are experiments like this better done outdoors?
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NATURE OF SCIENCE 

 Competing theories
The true nature of light was a major issue in science for many, many years: 
did light consist of waves or particles? Newton believed that light consisted of 
particles, however the interference of light seemed to confirm that light was 
wave-like in nature, but that theory was also shown to be imperfect by Einstein’s 
photon explanation of the photoelectric effect (see Chapters 7 and 11). 

4.5 Standing waves
Essential idea: When travelling waves meet they can superpose to form standing 
waves in which energy may not be transferred.

The nature of standing waves 
■ In Section 4.2 we discussed travelling waves, which transfer energy away from 

a source. In this section we will introduce a different type of wave: standing 
waves, which are sometimes called stationary waves. Standing waves are most 
commonly observed when waves are ‘trapped’ in a system and reflect back on 
themselves. The wave pattern stays in the same place.

 Describing the nature and formation of standing 
waves in terms of superposition

■ The principle of superposition can be used to determine what happens if 
two waves of the same frequency and amplitude pass through each other 
travelling at the same speed in opposite directions. This most commonly 
occurs when waves are reflected back upon themselves at some kind of 
boundary. At certain frequencies patterns may be observed, which are called 
standing waves.

 Nodes and antinodes 
■ In principle, standing waves can occur with any type of wave, 

but the most commonly visualized example is shown in the 
photos of Figure 4.56, which compares four standing waves of 
different frequencies on the same stretched string. Note that in 
each of these four examples, there are places where the string 
is stationary. These points are called nodes. The two waves 
arriving in opposite directions at a node are always exactly out 
of phase. 

■ The distance between adjacent nodes (or antinodes) is half a 
wavelength.

■ There are also places called antinodes, where the string 
is oscillating with its maximum amplitude. The two waves 
arriving in opposite directions at an antinode are always exactly 
in phase.

■ It should be noted that, apart from at the nodes, the string 
is oscillating all the time and a pattern is seen only because 
the string has completed many oscillations in the time during 
which the photo was taken.

Key concept
When waves are reflected back on 
themselves in confined spaces, at 
certain frequencies, superposition 
can result in standing waves.

55 Consider Figures 4.49 and 4.51. 

a Explain why the sound heard by the student rises and falls in intensity in Figure 4.51. 

b Estimate an approximate value for the sound frequency that would be needed for the maxima to be heard every 
metre along the path shown. 

c Is it possible for the sound intensity to be reduced to zero at any location (assume that both speakers produce sound 
of the same intensity)?

56 Explain how the apparatus shown in Figure 4.52 could be used to determine a value for the wavelength of the microwaves.

Figure 4.56
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Distinguishing between standing 
and travelling waves 
■ Travelling waves (as discussed in Section 4.2) transfer energy away from 

a source, but there is no transfer of energy by standing waves. Table 4.2 
summarizes the differences between these two types of wave.

Table 4.2

Standing waves Travelling waves
Wave pattern stationary pattern of nodes and antinodes progressive/travelling
Energy transfer no energy is transferred energy is transferred in the direction of wave travel
Amplitude (assuming 
no energy dissipation)

amplitude at any one place is constant but it varies 
with position between nodes; maximum amplitude 
at antinodes, zero amplitude at nodes

all oscillations have the same amplitude

Phase all oscillations between adjacent nodes are in phase oscillations one wavelength apart are in phase; 
oscillations between are not in phase

Frequency all oscillations have the same frequency all oscillations have the same frequency
Wavelength twice the distance between adjacent nodes shortest distance between points in phase

Observing, sketching and 
interpreting standing wave 
patterns in strings and pipes
■ The IB Physics course concentrates on standing waves of two particular kinds: 

transverse waves on stretched strings and longitudinal sound waves in pipes 
containing air (air columns).

■ It is possible for a particular system to vibrate with standing waves of 
different wavelengths and frequencies: these are called different modes 
of vibration or harmonics. The lowest frequency (longest wavelength) is 
called the first harmonic, f0. Other harmonics are multiples of f0, but they 
may not all be possible on a particular system. This depends on the boundary 
conditions of the particular system. See below.

■ If a stretched string is encouraged to oscillate (by plucking, for example), it will 
usually do so predominantly in its first harmonic mode. But strings and air 
columns can also be made to oscillate in other modes if they are disturbed by 
external oscillations of suitable frequencies.

■ Figure 4.57 shows the first four harmonics of a string that is fixed at both ends 
(the most common arrangement). Compare this to Figure 4.56. 

Expert tip

When oscillations from an external 
source are used to encourage 
oscillations on a separate system, it 
is an example of an effect which is 
known as resonance. There is more 
about this in Option B.4 (HL)

Expert tip

Standing waves are not confined to one-dimensional systems (as described in this 
section). For example, standing waves on horizontal metal plates make interesting 
demonstrations and standing waves in microwave ovens can produce variations in 
temperatures in cooked food.
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  Figure 4.57
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 Boundary conditions 
■ For stretched strings, the boundary conditions are that there will be nodes 

at fixed boundaries and antinodes at free boundaries. Figure 4.57 shows the 
most common example: two fixed ends. Note that all harmonics are possible 
on this system.

■ For pipes (air columns), the boundary conditions are that there will be nodes 
at closed boundaries and antinodes at open boundaries. As an example, Figure 
4.58 shows the first three harmonics in a pipe which is open at one end and 
closed at the other. Note that even numbered harmonics are not possible on 
this particular system.
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  Figure 4.58

Key concept
The values of the frequencies of 
possible harmonics in standing 
waves depend on the speed of the 
wave, the length of the system 
and nature of its ends: boundary 
conditions will affect whether 
nodes or antinodes appear at the 
end of a system.

Common mistakes

Note that Figure 4.58 is representing 
the amplitudes of sound which travels 
as longitudinal waves. The figure 
does not represent transverse waves.

The standing waves on stretched 
strings are transverse, but when 
oscillations are passed on through 
the air they are longitudinal waves 
(for example, the sounds produced by 
stringed musical instruments).

QUESTIONS TO CHECK UNDERSTANDING
57 Figure 4.59 shows a demonstration of standing waves in air in a long tube. 

To begin with a powder was spread along the tube, but when a certain 
frequency was produced by the loudspeaker the powder moved into piles as 
shown. 

a What do the red lines represent? 

b Explain why the powder moves into piles marked N. 

c Which harmonic is shown in the figure?

NA
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wires to
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generator

NA NA NA NA NA

Figure 4.59

58 Sketch standing wave patterns for the first three possible harmonics for 
waves on a stretched string which was fixed at one end and free at the 
other. Make a note of the wavelength in terms of the length of the string 
besides each pattern.

59 An organ pipe which was open at both ends had a first harmonic frequency 
of 80 Hz. What would be the first harmonic frequency of a pipe of the same 
length which was open at one end a closed at the other?

 Solving problems involving the frequency of a 
harmonic, length of the standing wave and the 
speed of the wave 

■ If the length of the system and its boundary conditions are known, the 
wavelength, , of a standing wave can be deduced for a known harmonic. 

■ If a known external frequency, f, was used to produce a particular standing 
wave, then the wave speed equation, c = f , can be used to calculate the speed 
of the wave, c.

 For example, consider the third harmonic in Figure 4.58. If the length of the 
pipe was 53 cm, the wavelength was 71 cm. If the frequency which produced 
this standing wave was 480 Hz, then the wave speed was 340 m s−1.
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 Standing waves are commonly used in experiments to determine wave speeds.
 The speed of a transverse wave on a stretched spring depends on the applied 

tension and the mass per unit length. In stringed musical instruments either of 
these may be changed to produce notes of different frequency.

■ In musical instruments using columns of air the speed of the wave cannot be 
changed, so different notes are achieved by changing the effective length of 
the air columns, or encouraging different harmonics.

QUESTIONS TO CHECK UNDERSTANDING
60 A sound standing wave is created in a 95.0 cm pipe which is open at both ends. 

a Assuming the speed of sound was 336 m s−1, calculate the frequency of the first harmonic. 

b Another standing wave was detected at a frequency of 710 Hz. Which harmonic was this?

61 When a guitar string is plucked the whole string oscillates and the dominant frequency is the first harmonic.

a Explain what must happen to the string to make a louder sound of the same frequency. 

b Explain why a different string will be needed to produce a lower pitched note.

62 Figure 4.60 shows an experiment designed to investigate how 
the speed of a wave along a stretched string varies with tension. 

a Which harmonic is shown in the figure? 

b If L = 66 cm, what is the wavelength shown? 

c If the frequency of the vibrator was 25 Hz, what was the 
speed of the wave? 

d What frequency would be needed to produce the fifth 
harmonic under these conditions?

e How could the tension be increased, and would the wave 
speed increase or decrease? 

Expert tip

After the wave nature of electrons had been discovered, it was realized that an 
electron could be visualized as a standing wave within an atom. This was a major 
advance in atomic physics. This is discussed in Section 12.1 (HL).

Figure 4.60
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 Common reasoning process
Historically, the study of standing waves has been closely linked to music. 
More than 2500 years ago, Pythagoras and others are credited with the 
foresight of believing in patterns and harmonies in the world around them 
and the objects in the night skies. Notably this included looking for patterns 
in the harmonies of musical notes. Such beliefs, original at the time, reflect 
the origins of our modern understanding of science: that there is a ‘scientific 
method’ which is common to all reasoning and experimentation in science. In 
particular, mathematics is often described as the ‘language of science’, but 2500 
years ago the idea that there was a mathematical basis to the art of music was 
unacceptable to many at the time.
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5.1 Electric fields
Essential idea: When charges move an electric current is created.

Charge
■ Electric charge is a fundamental property of some sub-atomic particles. 

Particles or objects with an overall charge are described as being ‘charged’.

 Identifying two forms of charge and the direction of 
the forces between them 

■ There are only two forms of charge. Their fundamental property is that there 
are electric forces between them. These forces may be attractive or repulsive. 
We call the two forms of charge positive charge and negative charge and 
they are usually described as ‘opposite’ charges.

■ The most well-known sub-atomic particles are protons, neutrons and electrons. 
Electrons are negatively charged, protons are positively charged and 
neutrons are uncharged (neutral). 

 Electrostatic effects 
■ It should be clear that all macroscopic objects contain countless numbers of 

charged particles. Usually the number of positive charges and the number of 
negative charges are about equal, so that overall we may describe the objects as 
being neutral.

■ It is usually not difficult to transfer some ‘free’ electrons from one object to 
another (by friction, for example), so that the object with extra electrons 
becomes negatively charged overall, while the other object (which has lost 
some electrons) then has an overall positive charge. (The total number of 
charges in the system remains constant: see conservation of charge below.)

■ Most everyday observations of electrostatic effects can be explained in terms of 
the transfer of electrons during the process of charging. 

■ There are forces between charged objects, but it is also common for there 
to be forces between charged objects and uncharged objects. This is because 
some electrons in the uncharged object may be attracted to, or from, the area 
nearest the charged object.

■ Charged objects do not usually remain charged. This is because electrons 
will readily flow to, or from them to the Earth (or other objects). If this is 
done deliberately we talk about earthing an object. When an object loses its 
charge, we refer to it as being discharged.

 Measurement of charge 
■ Charge is given the symbol q (although some sources use Q, which may be 

confused with thermal energy).
■ The unit for charge is the coulomb, C. This is a relatively large unit, so 

that microcoulombs, μC (10−6 C), and nanocoulombs, nC (10−9 C), are also in 
common use.

■ One coulomb is the charge that flows past a point in one second if the current 
is one amp (Δq = IΔt; see later)

■ The smallest possible amount of charge on a free particle is equal to the 
charge on one electron, e = −1.6 × 10−19 C. A proton has charge of the same 
magnitude, but it is positively charged.

■ All (free) charge comes in multiples of this basic quantity. For this reason, 
charge is said to be quantized.

■ The conservation of charge means that if, for example, the charge on an 
object decreases, something else must have gained an equal charge.
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Figure 5.1

Key concept
Electric forces exist between 
all charged particles or objects. 
Opposite charges attract, like 
charges repel. See Figure 5.1.

Expert tips

It might seem sensible to make the 
charge on the electron the basic unit 
for charge (rather than the coulomb), 
but that would be inconveniently 
small and inappropriate for 
macroscopic measurements.

Quarks (Chapter 7) have charges of 
±1

3e or ±2
3e, but they do not exist as 

free, individual particles/charges.

5

Key concepts
The total charge in any isolated 
system is constant (the law of 
conservation of charge).
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Electric field 
■ All electric charges create electric fields around themselves (where other 

charges will experience forces).

■ The definition of electric field strength refers to a ‘small test charge’ because 
it must not have any properties which would upset the field that it is trying to 
measure.

■ It may help understanding of electric fields (in which charges experience 
forces) to compare them with gravitational fields (in which masses experience 
forces). Electric field strength, E, is a concept analogous to gravitational field 
strength, g.

■ However, gravitational fields always produce attractive forces, so that the 
direction of the field is obvious, whereas electric forces may be attractive or 
repulsive. For this reason, the definition of electric field strength has to refer 
to the sign of a charge. The direction of an electric field is chosen to be the 
direction of the force on a positive charge.

■ Electric field strength is a vector quantity. 
If two or more fields exist at the same 
location, the resultant field strength can be 
determined by vector addition. Figure 5.2 
shows the graphical method for determining 
the resultant of two separate fields, E1 and E2, 
which are not aligned.

 Electric field diagrams 
■ We can represent electric fields by drawing field lines. 
■ The most basic electric fields are the radial fields around isolated point 

charges. Figure 5.3 shows the two possibilities

a

–

b

+

Figure 5.3

QUESTIONS TO CHECK UNDERSTANDING
1 Draw a model of a neutral hydrogen atom with one proton and one 

electron. Label the particles with the signs and magnitudes of their charges 
and add vector arrows to show the relative sizes and directions of electric 
forces.

2 A lithium atom contains three protons and three electrons. 

a What is its total positive charge? 

b What is its total negative charge? 

c If it becomes ionized by the removal of one electron, what is its overall 
charge?

3 Explain how it is possible for dry hair to become positively charged by 
brushing.

4 Explain with the help of a diagram, how it is possible for a charged plastic 
rod to attract a small uncharged piece of paper.

Key concept 
Electric field lines show the 
direction of the force that would 
be exerted on a positive test charge 
if it was placed at that point (from 
positive to negative). A field is 
strongest where the lines are 
closest together.

Key concepts 
An electric field is a region of 
space in which any charge would 
experience  an electric force.

The electric field strength, E, 
at a point is defined as the force 
per unit charge (1 C) that would 
be experienced by a small positive 
test charge placed at that point. 
E = F

q
; its units are N C−1 

(or V m−1).
E1

E2

 resultant field

Figure 5.2

Expert tip

Physicists use the term field to 
describe spaces in which forces 
can be experienced without any 
physical contact or the need for 
any intermediate medium. Field is 
a difficult concept to understand 
and sometimes the phrase ‘forces 
acting at a distance’ is used. The 
most commonly discussed fields are 
gravitational, electric and magnetic.
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■ There are four other very common types of field. These are shown in Figure 5.4. 
Figures 5.4a and 5.4b show the fields around pairs of charges. The arrangement 
in Figure 5.4a shows opposite charges and is called a dipole. The charged  
sphere shown in Figure 5.4c behaves as if all of its charge was at its centre. 
Finally, Figure 5.4d shows the uniform field created between parallel charged 
metallic plates.

+ + + + + + + + + + + +

– – – – – – – – – – – –

+ – – – –

a b c d

Figure 5.4

 Solving problems involving electric fields 

QUESTIONS TO CHECK UNDERSTANDING
5 Consider the diagrams in Figure 5.4. Which of the diagrams includes a place 

where the electric field is zero (a ‘neutral point’)?

6 a What is the magnitude of the electric field strength at a place where a 
charge of +4.7 × 10−8 C experiences a 
force of 9.3 × 10−5 N? 

b If the charge was replaced with another 
charge of −1.9 × 10−8 C in the same 
field, how would the force change?

7 Figure 5.5 shows a positively charged 
metal sphere suspended over a negatively 
charged metal plate. Use a copy of the 
diagram to represent the electric field 
produced by this arrangement. (Field lines 
are always perpendicular to conducting 
surfaces.)

8 What is the magnitude of the resultant electric field when fields of +3.4 × 
104 N C−1 and −7.1 × 104 N C−1 combine:

a if the fields are aligned

b if the fields are perpendicular to each other?

+
+
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Figure 5.5

Coulomb’s law 
■ The magnitude of the force, F, between two isolated point charges, q1 and q2, 

is proportional to the product of the charges and inversely proportional to 
the square of the distance, r, between them. See Figure 5.6, which represents 
repulsive forces between similar charges. This is known as Coulomb’s law: 

q1 q2

q1 q2

r
F F

q1 q2

separation   
force 4F

separation r
force F

separation 2r
force  

r
2

F
4

Figure 5.6

■ Coulomb’s law: F = k
q q

r
1 2

2 , where k is known as the Coulomb  

constant. Its value is 8.99 × 109 N m2 C−2.

Key concept
Coulomb’s law enables us to 
calculate the electric force 
between two point charges. A force 
of equal magnitude acts on both 
charges, but in opposite directions.



5.1 Electric fields 77

■ If both charges have the same sign the force is positive (repulsive). If the 
charges have opposite signs the force is negative (attractive). 

■ Coulomb’s law can also be used with charged spheres, which are surrounded by 
electric fields that behave as if all the charge was concentrated at the centre of 
the spheres (Figure 5.4c). r is then the distance between the centres of the two 
spheres.

■ Coulomb’s law as expressed above assumes that the space between and around 
the two charges is a vacuum (or air). The Coulomb constant can be written in 

the expanded form k = 
1

4πe0
 to make this origin clearer. ε0 is a constant which  

describes the electric properties of vacuum. It is called the permittivity of  
free space (vacuum). Its value is 8.85 × 10−12 C2 N−1 m−2. In Coulomb’s law, the 
value of ε0 controls the magnitudes of the forces between charges in vacuum.

■ Coulomb’s law can therefore be alternatively written as: F = 
e

q q
r

1
4π 0

1 2
2 .

■ If the charges were surrounded by any other medium (water for example), the 
forces between them would be reduced and this is represented in the equation 
above by changing ε0 to ε, the permittivity of the medium.

■ Every medium has a permittivity of greater value than ε0. The permittivity of 
air may be assumed to be the same as for vacuum. 

Expert tips 

We can determine the radial electric field strength around a point charge (q1) by 
using Coulomb’s law. The field, E, at a distance r, equals F/q2, where q2 is a test 
charge placed at that point. But from Coulomb’s law F = kq1q2 /r 

2, so that  
E = kq1/r 

2. There is more about this in Chapter 10 (HL). 

The ratio ε/ε0 is sometimes called the relative permittivity of a medium (or its 
dielectric constant: see Section 11.3, for HL students).

Permeability is a magnetic property of a medium comparable to its electric 
permittivity (see Section 5.4). It is a measure of their importance that these two 
constants control the value of the speed of electromagnetic waves.

 Solving problems involving Coulomb’s law 

QUESTIONS TO CHECK UNDERSTANDING
9 What is the force between a proton and an electron in a hydrogen atom 

(assume separation = 5.3 × 10−11 m)?

10 There was a force of 6.3 × 10−8 N between two charged spheres, each of 
radius 2.8 cm when the separation of their surfaces was 10.0 cm in air. If 
one sphere had a charge of 8.7 nC, what was the charge on the other? 

11 a If the measurements described in the previous question were repeated 
with the spheres placed in a container of carbon dioxide (rather than 
air), would the force remain the same, increase or decrease?

b Explain your answer with a calculation. The electric permittivity of 
carbon dioxide is 1.4 × 10−11 C2 N−1 m−2.

12 Determine the electric field strength at a distance of 25 cm from a point 
charge of 10 nC.

Electric current 
■ An electric current is a flow of charged particles. In electrical circuits the 

moving charges are usually electrons. 

 Direct current (dc) 
■ Currents which always flow in the same direction around a circuit are called 

direct currents (dc). The direction is shown with an arrow that always 
points from the positive terminal (of the energy source) around the circuit to 
the negative terminal. This is called the direction of conventional current. 

Expert tip 

Coulomb’s law is mathematically very 
similar (analogous) to Newton’s law 
of gravitation (Section 6.2).

Key concept 
The electric properties of a 
particular medium are represented 
by its permittivity, ε.

Expert tip

Currents in liquids and gases usually 
involve the movement of ions, but 
that is not a part of this course. An 
ion is an atom or molecule that has 
an overall charge because it lost or 
gained one or more electrons.
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(Although electrons in circuits actually flow the other way.) Even if the 
magnitude of a current changes, it is still described as a direct current if the 
flow is always in the same direction. See Figure 5.7.

 Alternating currents (ac) repeatedly change direction. Most commonly, 
alternating currents keep a constant frequency, for example the mains ac 
frequency in many countries is 50 Hz. This chapter concentrates on dc, but 
there is more about ac in Chapter 11 (HL). (The term mains electricity is 
used for electrical energy supplied to many different homes by cables from 
power stations.)

■ Current is given the symbol I. Current = charge/time. I = 
ΔΔ
ΔΔ

q
t
.

■ The unit of current is the ampere (amp), A. 1 A = 1 C s–1.
■ Since the charge on the electron is −1.6 × 10−19 C, a flow of 1 C of charge past a 

point in a metallic conductor in a circuit every second involves the movement 
of 6.25 × 1018electrons.

 Identifying sign and nature of charge carriers in a 
metal 

■ A material through which charges can flow is called a conductor. If 
charge cannot flow through a material it is called an insulator. No 
material is a perfect conductor or insulator (with the exception of very cold 
superconductors).

■ The difference between solid conductors and insulators is explained in terms 
of the number of free electrons (sometimes called delocalized electrons) 
that are able to move through the material. In good conductors, like metals, 
some of the outer electrons (of the atoms) are not permanently attached to 
particular atoms, but they can move around freely, like the random motion of 
molecules in a gas.

■ This dynamic situation is not easy to represent in a single diagram, but 
Figure 5.8 shows an idealized representation of a current carried through 
a metal by free electrons. The actual motions of the electrons are much 
more erratic than the net movements shown in the figure. The electrons 
in a current have to move past the vibrating ions of the metallic structure 
and this explains why the conductor has electrical resistance to the flow of 
current (see Section 5.2). 

positive metal ions
vibrating in fixed positions

negative free electrons
in an electric current

connected to
positive terminal

of battery

connected to
negative terminal

of battery

Figure 5.8

■ Electric currents are measured by ammeters placed in series in the circuit. See 
Figure 5.9, in which a cell, a lamp and an ammeter are connected in a simple 
series circuit.

 Identifying drift speed of charge carriers 
■ The drift speed, v, of electrons (or other charge carriers) in an electric 

current is their net speed along the conductor. It should not be confused with 
their instantaneous very high speeds in random directions (motions which 
they have even when there is no current flowing).

current is always
shown flowing from
positive to negative
around the circuit

electrons flow from
negative to positive

+ −

Figure 5.7

Expert tip 

Direct currents are generally more 
useful than ac, but alternating 
currents are used for transmitting 
electrical power around the world 
because alternating p.d.s are easily 
transformed to the high voltages 
that are needed to reduce energy 
dissipation (see Chapter 11 (HL).)

Expert tip 

The ampere is one of the 
fundamental units of scientific 
measurement in the SI system (see 
Section 1.1). Students do not need to 
know its definition, but it is related 
to the magnetic force produced 
between parallel wires carrying direct 
currents (see Section 5.4).

+ − black (−)
terminal

red (+)
terminal

ammeterA

Figure 5.9
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■ The magnitude of a current in a conductor depends on the drift speed, v, of 
the charges, but also on the magnitude of the charges, q, the charge density, 
n (number of charges in a cubic metre of the conductor) and the cross-
sectional area of the conductor, A. Figure 5.10 shows a section of a cylindrical 
shaped conductor (for example, a metal wire).

vΔt
P

n, free electrons
per unit volume

I I

area, A

Figure 5.10

■ During a time interval Δt an electron of charge q will move a net distance of 
vΔt. So that the number of electrons flowing past a point P in time Δt will be 
nAvΔt (charge density × volume).

■ Using Δ
Δ=I

q
t

 leads to the drift speed equation: I = nAvq

 Solving problems involving current and charge, and 
using the drift speed equation 

■ The charge density for metals is very high. For example, the number of copper 
atoms in a cubic metre is 9 × 10 28 and if, on average, each copper atom supplies 
approximately one free electron, the charge density for copper is also about  
9 × 1028 electrons per cubic metre.

■ When typical values for I, A and n are inserted into this equation, we discover 
that the drift speed for electrons is surprisingly low.

■ Semiconductors like silicon contain much fewer charge carriers. This 
means that if the same current passes through a semiconductor and a 
metal in the same series circuit, the charges must move much faster in the 
semiconductor.

QUESTIONS TO CHECK UNDERSTANDING
13 a How much charge flows through a light bulb in one hour if the current 

is 0.24 A?

b How many electrons pass through the bulb every second?

14 Calculate the drift speed of electrons in a copper wire of diameter 1 mm 
when there is a direct current of 1.0 A (assume the charge density for 
copper = 8.5 × 1028 electrons m−3). 

15 Suggest how the drift velocity of electrons may change when a current is 
alternating.

Energy and charge
■ Electrical energy is transferred in circuits by moving charges, and that 

energy is then transferred into other forms by the components in a circuit (for 
example, lamps, motors and heaters). 

■ We now need to introduce the very important concept of energy transferred 
to, or from, charges:

 Potential difference 
■ P.d is sometimes called voltage because the unit of p.d. is the volt, V.
■ A p.d. of one volt means that one joule of energy is transferred by one 

coulomb of charge moving between the two points (1 V = 1 J C−1).
■ A p.d. supplied by a battery, or other power source, is needed across any 

circuit in order to make a current flow through it. The sum of the p.d.s ‘used’ 
by the components around a series circuit must add up to the p.d. supplied. 
See next point.

Common mistakes

The drift speed of electrons in 
currents through metal wires may 
seem low when we consider how 
quickly most electrical devices start 
working after we turn them on. To 
understand why, we need to consider 
that currents do not start at the 
power supply or the switch, rather we 
should imagine that all electrons in 
the circuit start moving at that same 
moment (although this cannot be 
perfectly true). 

Key concepts
Metals contains many  negatively 
charged free electrons which are 
not tied to specific atoms and 
which move around randomly. An 
electric current exists when they 
are made to also move (drift) along 
a wire in the same direction as 
each other.

The value of the current can be 
related to the electron drift speed 
and the charge density.

I = nAvq

Key concept
The energy that would be 
transferred if one unit of charge 
(1 C) moved between two points is 
called the potential difference 
(p.d.), V, between those points. 
p.d. = energy transferred (work 

done)/ charge: V = Wq .
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■ The p.d. between any two points in a circuit can be measured with a 
voltmeter connected between the points (in parallel across the component 
being checked). In Figure 5.11, Vs= V1 + V2

− +

− +
V1

− +
Vs

− +
V2

Figure 5.11

■ The concept of potential difference is not limited to electrical circuits. It 
can be applied to any electric field. For example in a storm there could be a 
potential difference of 108 V between a cloud and the ground.

■ Consider the electric field, E, shown in Figure 5.4d, in which a charge q would 
experience a force F. If the plates are separated by a distance d and have a p.d. 
of V across them, then the work done in moving the charge from one plate to 

the other = Fd = Vq. Rearranging gives Fq  = E = 
V
d . This gives us a convenient 

way of calculating the uniform electric field between parallel plates. The units 

V m−1 are equivalent to N C−1.

 A unit for energy in atomic physics: the electronvolt 
■ When a charged particle is accelerated from rest by a p.d., the work done  

(W = Vq) can be equated to the kinetic energy (1
2 mv2) in order to determine 

the particle’s speed.
■ If a free electron was accelerated through a p.d. of 1000 V, the (kinetic) 

energy that it would gain = p.d. × charge = 1000 V × (1.6 × 10−19) C = 1.6 × 
10−16 J. This is such a common type of calculation in atomic physics that the 
energy transfer when an electron is accelerated by 1000 V is simply said to be 
1000 electronvolts (avoiding the need for any calculation, or the use of very 
small numbers). 

■ The conversion between electronvolts and joules: W (eV) = W(J)
e .

■ The unit electronvolt is used widely throughout atomic physics (in preference 
to joules). It can be used with any particle or radiation (not just accelerated 
electrons). The units keV and  MeV are also in very common use.

 Solving problems involving potential difference and 
charge/Calculating work done in an electric field in 
both joules and electronvolts 

Key concept
The electronvolt, eV, is defined 
as the unit of energy which is 
equal to that which is transferred 
when a charge of 1.6 × 10–19 C 
moves through a p.d. of 1 V.

QUESTIONS TO CHECK UNDERSTANDING
16 a How much work is done in an electric field when a charge of +5.6 nC 

moves though a potential difference of: i +250 V, ii −250 V? 

b In which case is the work done on the charge?

17 A p.d. of 5000 V was connected across parallel metal plates which were 
separated by a distance of 8.3 cm. 

a The top plate was negatively charged. Sketch the arrangement and 
show the electric field lines. 

b What was the magnitude of the uniform electric field created between 
the plates? 

Expert tip

The term potential difference 
between two points may cause some 
confusion in this section, especially 
if it raises the question: what is the 
meaning of the potential at a point? 
The answer to this question is to 
be found in Section 10.1 (HL). In 
this section, however, it is probably 
better to simply accept the term p.d. 
(voltage) without worrying about  the 
meaning of potential.
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NATURE OF SCIENCE

 Modelling
Understanding physics requires that students accept models of reality. Models 
may be physical representations, drawings, mathematical equations, theories, 
etc. All models aim to simplify, to help understanding and to make predictions. 
In nearly every topic in physics, students need to be able to explain macroscopic 
observations by using microscopic models about the behaviour of atoms, ions 
and molecules. The model of electrical conduction of free electrons in solids is 
a good example from this chapter. Since particle behaviour cannot be directly 
observed, in order to understand electricity, students need to be able to use 
models of the microscopic world that they learn from their teachers or other 
resources, with no clues from their own senses. But these models have stood the 
test of time.

5.2 Heating effect of currents
Essential idea: One of the earliest uses for electricity was to produce light and 
heat. This technology continues to have a major impact on the lives of people 
around the world.

Heating effect of current 
and its consequences 
■ Whenever any electric current passes through a conductor, some energy will 

be transferred to internal energy which then spreads away from the conductor 
as thermal energy. All currents have ‘heating effects’. 

■ The amount of thermal energy dissipated depends on the magnitude of the 
current and the resistance of the conductor. 

■ In many circuits we may wish to keep the energy that is dissipated as low as 
possible, but on other occasions we wish to use electricity to make things 
hotter, or to produce light.

c Explain how it might be possible for a tiny charged oil drop to remain 
stationary between the plates. 

d What would be the magnitude of the electric force if the drop had a 
charge of 1.12 × 10–18 C?

18 What is the potential difference across a battery which transfers 135 J of 
energy in 5 s to a current of 3 A?

19 A lamp in a circuit has a potential difference of 4.5 V across it. If the lamp 
has a power of 2.5 W, how many coulombs of charge flow through it every 
second?

20 a What p.d. is needed to accelerate an electron from rest to a kinetic 
energy of 500 eV? 

b Determine the final speed of the accelerated electron.

21 A doubly charged positive ion is accelerated by a p.d. of −5.6 kV. 

a What is its final kinetic energy: i in eV, ii in J? 

b What assumption did you make?

22 An alpha particle emitted by an unstable nucleus (see Chapter 7) has a 
kinetic energy of 2.8 × 10–13 J. Express this energy in MeV.
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Circuit diagrams 
■ Circuit diagrams show how power sources are connected with metallic wires 

(connecting leads) to devices which transfer energy usefully. There are two basic 
kinds of circuit: series and parallel.

■ Placing circuit components in series means that they are connected one after 
another, with no alternative paths for an electrical current. The same current 
flows through all the components.

 If components are connected in parallel it means that the current divides 
because it can take two or more different paths between the same two points 
in the circuit. 

■ Some circuits contain both series and parallel sections.

 Drawing and interpreting circuit diagrams 
■ This is an important skill required throughout this chapter and elsewhere in 

the course.
■ Students need to be familiar with all the standard circuit symbols shown in 

the IB Physics data booklet. See Figure 5.12. If a symbol is forgotten it may be 
acceptable to use a rectangle with its name written inside.

cell battery 

lamp ac supply 

switch ammeter 

voltmeter variable resistor 

resistor 

transformer

potentiometer 

light-dependent 
resistor (LDR) 

thermistor 

heating element 

capacitor

A

V

diode

Figure 5.12

Kirchhoff’s circuit laws: first law 
■ These two laws are mathematical summaries of conservation principles applied 

to circuits.
■ Because of the law of conservation of charge, the total current coming into 

any junction in an electric circuit must equal the total current leaving the 
same junction. ΣI = 0 (junction). This is Kirchhoff’s first law. Currents 
arriving at a junction may be considered as positive and currents leaving as 
negative.

■ Figure 5.13 shows an example. 
■ Kirchhoff’s second law (ΣV = 0 (loop)) is covered later in this section.

I4

I5

I1 + I2 + (−I3) + (−I4) + (−I5) = 0

I2

I1 I3

Figure 5.13Key concept
Kirchoff’s first law: the total current arriving at any junction is equal to 
the total current leaving the same point.
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Resistance expressed as R = VI  
■ In general terms, electrical resistance is a measure of how difficult it is to pass 

an electric current through something.

■ The resistance of a component may change for a number of different reasons. 
In particular, significant temperature changes usually affect the resistance of a 
component.

■ A component which is designed to have a certain resistance is called a resistor. 
Variable resistors are widely used for varying currents and voltages in circuits.

 Solving problems involving, current, Kirchhoff’s first 
circuit law, potential difference and resistance 

QUESTIONS TO CHECK UNDERSTANDING
23 Consider Figure 5.13. If I1, I2, I3 and I4 were all 1 A, what was I5?

24 Are the appliances in your home connected in series or parallel? Justify your 
answer.

25 a What is the resistance of a 230 V domestic light bulb if the current 
through it is 0.11 A? 

b Suggest why the current through the bulb may have been higher at the 
moment that it was first turned on. 

c What current would flow through the bulb if it was connected to 110 V? 

d What assumption did you make in answering part c?

26 What p.d. will make a current of 2.4 mA pass through a 4.7 kΩ resistor?

V
I characteristics
■ A knowledge of how different p.d.s affect current is important information 

about any component. The simplest way of investigating this is shown 
in Figure 5.14. The p.d. can be changed by altering the output of the low 
voltage dc supply (or, if batteries are used, by varying the number of cells). 
Other methods are discussed later.

■ The results of such experiments are usually shown graphically, and are  
commonly known as V

I
characteristics.

■ Figure 5.15 shows the simplest example, where the current is proportional to 
the p.d. This is an idealized result, but it may be assumed to be accurate for 
metals at constant temperature. It is a representation of Ohm’s law: 

 Ohm’s law 
■ A component for which Ohm’s law applies is said to be ohmic. An ohmic 

component has a constant resistance.

 Identifying ohmic and non-ohmic conductors 
through a consideration of the V

I
 characteristic graph 
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Figure 5.15 Figure 5.16

■ A component to which Ohm’s law does not apply is called non-ohmic and it does 
not have a constant resistance. Figure 5.16 shows a typical example, which could, 
for example, represent the behaviour of a filament lamp. A filament emits more 
light as the current increases and it gets hotter, but this also increases its resistance.

Key concept
Resistance, R, is the ratio of the 
p.d. across a component to the

current through it: R = V
I

. The

unit of resistance is the ohm, Ω. 
1 Ω = 1 V A–1.

source of
variable
voltage

component
being

investigated

A

V

Figure 5.14

Key concept
Ohm’s law states that the current 
through a metallic conductor 
is proportional to the potential 
difference across it, if the 
temperature remains constant.

Common mistake

Resistance is not equal to the 
gradient of a current—p.d. graph 
(unless the component is ohmic).
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Expert tip
V
I

graphs are sometimes extended into negative values to represent what happens  

if the voltage is reversed. Many devices such as lamps, heaters and motors will 
continue to function normally if the p.d. and current are reversed. This means 
that Ohm’s law and resistance calculations can usually be used for alternating 
currents in such metallic devices. However, most electronic components need 
a current to flow through them only in one particular direction. A diode is the 
simplest example: this a component that is designed to only allow current to flow 
through it (and the circuit in which it is connected) in one direction.

QUESTIONS TO CHECK UNDERSTANDING
27 a Sketch a V

I
 characteristic (for voltages up to 10 V) for a 5 Ω

  ohmic resistor. 

b Add to your sketch a line which could represent a filament 
lamp which had a resistance of 5 Ω when the voltage was 
6 V.

28 Figure 5.17 represents the V
I

 characteristic of a component 
called a thermistor, with increased temperature as the current 
rose. 

a Describe the behaviour shown in the graph. 

b Calculate the resistance of the component when the p.d. 
was: i +2.0 V, ii –4.0 V. 

c Sketch the V
I

 characteristic of a diode which only allowed 
current to pass through it in one direction.
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Resistors in series and parallel 
■ When components are connected in series (see Figure 5.18) the same current 

flows through each of them and the total p.d. across all of them is equal to the 
sum of the individual p.d.s: Vtotal = V1 + V2 + V3.

■ If the resistance of one resistor changes, the current will change and the p.d.s 
across all three will change. 

V1 V2

I I I I

V3

R1 R2 R3

Vtotal

Figure 5.18

■ The total resistance of two or more resistors in series can be calculated  
from Rtotal = R1 + R2 + …

■ When components are connected in parallel (see Figure 5.19) they each have 
the same p.d. across them and the total current is equal to the sum of the 
individual currents Itotal = I1 + I2 + I3

■ The total resistance of two or more resistors in parallel can be calculated  

from 
1

Rtotal

 = 
1

R1

 + 
1

R2

 + …

Expert tip

If two or more resistances are 
connected in series with a fixed 
p.d. across them, as in Figure 5.18, 
the voltages across them will be in 
the same ratios as their resistances 
(because the current is the same for 
all of them).

Itotal

I1
R1

R2

R3

I2

I3

Itotal

Figure 5.19
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 Describing ideal and non-ideal ammeters and 
voltmeters 

■ Look again at Figures 5.9 and 5.11, which show how ammeters and voltmeters 
should be connected in a circuit. Ideal meters, of course, will not affect the 
quantities that they are measuring. 

■ Practical (non-ideal) ammeters usually have very low resistances (maybe 
10−3 Ω) and digital voltmeters have very high resistances (maybe 10 MΩ or 
more). Under most circumstances such meters may be considered to be ‘ideal’, 
because their resistances are very different from the resistances of other 
components in a circuit.

■ However, occasionally, in high resistance or very low resistance circuits, the 
resistances of the meters will have a significant effect on the circuit, so that 
their resistances affect the readings that they display.

 Solving problems involving potential difference, 
current and resistance 

Key concept
An ideal ammeter has zero 
resistance, an ideal voltmeter 
has infinite resistance. 

QUESTIONS TO CHECK UNDERSTANDING
29 Three resistances have values of 100 Ω, 200 Ω and 300 Ω. 

a Draw the combination of these three resistors which has the greatest 
resistance. What is their combined resistance? 

b Draw the combination of these three resistors which has the least 
resistance. What is their combined resistance?

30 Show how three equal resistances, each 2 Ω, can be connected together 
to produce an overall resistance of 3 Ω.

31 Figure 5.20 shows five identical lamps in a circuit. Assume that their 
resistances are equal and constant. 

a If each lamp has a resistance of 6.0 Ω, determine the overall resistance 
of the circuit. 

b If the battery supplies a p.d. of 12.0 V, calculate the currents through: 
i lamp A, ii lamp C, iii lamp E. 

c If lamp D stops working, how will that affect the brightness of the 
other lamps?

32 Figure 5.21 shows a voltmeter connected with a switch across one of two 
one million ohm resistors connected in series to a 6.0 V cell. 

a If the voltmeter also has a resistance of one million ohms, what 
voltage reading will it display when the switch is closed? 

b What would the voltages across the two resistances be when the 
switch was open?

33 Figure 5.22 shows three resistors connected to a battery supplying a p.d. 
of Vs.

a What value of the variable resistance will produce a reading of Vs

2
 

on the voltmeter? 

b What are the maximum and minimum readings on the voltmeter 
when the variable resistor is adjusted?

34 Consider Figure 5.14. 

a If the voltmeter reading was 4.7 V and the ammeter read 1.3 A, 
what was the value of the resistance? 

b If a student incorrectly connected the meters, with the ammeter 
where the voltmeter is shown, and the voltmeter where the 
ammeter is shown, what readings would be seen on the meters? 
(Assume that they were ideal meters.)
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C D

E

Figure 5.20
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Experiments to investigate resistance 
■ The circuit shown in Figure 5.14 can be used to determine resistance values 

and how they may change. But, there is an alternative method which uses 
a fixed voltage supply and a variable resistor to provide varying voltages. See 
Figure 5.23.

■ The p.d. from the battery is shared by the component under investigation and 
the variable resistor. If the value of the variable resistance is (for example) 
increased, the current in the series circuit will decrease and the p.d. across the 
component will also fall. 

 Describing practical advantages of a potential 
divider over a series resistor in controlling a simple 
circuit 

■ In Figure 5.23, in order for the component to be able to get the full range of 
p.d.s available from the battery, the resistance of the variable resistor would 
need to change from zero to infinite. More realistically, if low values of p.d. 
are required, then the variable resistance would need to be able to increase to 
values very much greater than the component.

■ To solve this problem the same variable resistance can be connected as a 
potential divider, using all three of its terminals. See Figure 5.24. Used 
in this way it is called a potentiometer. This circuit enables the p.d. across 
the component to be changed from 0 V to the maximum available from the 
battery.

 Investigating combinations of resistors in parallel 
and series circuits 

■ It is possible to experimentally confirm the equations for series and parallel 
combinations of resistors by using the circuits described above.

 Investigating one or more of the factors that affect 
resistance experimentally

■ The same circuits can be used to investigate how the resistance of a wire 
depends on its length, cross-sectional area or temperature.

Resistivity 
■ The resistance, R, of a length of metal wire is proportional to its length, L, and 

inversely proportional to its cross-sectional area, A (at constant temperature). 

■ In general, for a regularly shaped specimen of the same material, R = 
ρρL
A

.

■ Good conductors have relatively low resistivities. Good insulators have 
relatively high resistivities. Semiconductors, like, silicon, are in between.

Expert tip

When a material gets hotter there may be two effects on its resistivity. Firstly, 
increased vibrations of the ions will make it harder for the electrons to pass 
through, thereby increasing resistivity. Secondly, the extra energy supplied may 
release more free electrons, thereby tending to reduce resistivity.

In metals the first of these factors is the more important, so there is a tendency 
for the resistivity of a wire to increase as it gets hotter. But for insulators and 
semiconductors the second factor tends to dominate and they may be much 
better conductors (lower resistivity) at they get hotter.

If some metals are cooled to very low temperatures their resistivity falls to zero. 
They are then said to be superconducting.
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Figure 5.23

A

component
being investigated

V

Figure 5.24

Key concept
Connecting a three terminal 
variable resistor across a battery 
makes a potential divider capable 
of fully varying the voltage input 
to the rest of the circuit.

Key concepts
The resistivity, ρ, of a material 
equals the resistance of a one 
metre length of cross-sectional 
area 1m2: ρ = RA

L
The unit of resistivity is Ω m.

Common mistake

The unit of resistivity is Ω m, not Ω m−1.
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QUESTIONS TO CHECK UNDERSTANDING
35 Describe an experiment to investigate how the cross-sectional area of a wire 

affects its resistance.

36 Calculate the resistance of a 2.0 km length of aluminium cable of cross-
sectional area 1.8 cm2. The resistivity of aluminium is 2.8 × 10−8 Ω m. 

37 A student applied a p.d. of 1.46 V across the ends of a 98 cm length of an 
alloy of resistivity 1.1 × 10−8 Ω m. If the diameter of the wire was 0.14 mm, 
what was the current in the wire?

38 Suggest how the charge density and resistivity of a material are related to 
each other.

39 Glass has a resistivity ≈ 1012 Ω m at room temperature and is considered to 
be an insulator. 

a What current does this predict for a glass rod of cross-sectional area 
5 mm2 and length 10 cm when connected to 12 V? 

b A student tried to measure this current, but was unsuccessful. But when 
the rod was heated very strongly a current of 0.05 A was measured. 
Estimate the resistivity of the hot glass.

40 Consider Figure 5.23. If the component had a resistance of 10 Ω and the 
variable resistor was adjustable between 0 and 30 Ω, what range of p.d.s 
could be applied across the component using a 12 V battery?

41 Draw a diagram of a circuit with a potential divider which could be used to 
investigate the resistance of a 12 V, 0.2 A lamp. Label the components with 
suitable values.

 Solving problems involving potential difference, 
current, resistance and resistivity 

Kirchhoff’s circuit laws: second law 
■ Because of the law of conservation of energy, the sum of the p.d.s supplying 

energy to any circuit loop must equal the sum of the p.d.s across components 
used for transferring energy to other forms. ∑V = 0 (loop). This is known as 
Kirchhoff’s second circuit law.

■ A circuit ‘loop’ means any path that starts and ends at the same point.
■ Typically the p.d.s across the components will not be known directly, so IR 

must be used for each component, remembering the directions of the currents. 
(Unknown current directions can be guessed and the sign of the answers will 
indicate if the guesses were right or wrong.)

 If there is more than one source of power in a circuit loop (for example two 
separate batteries), one p.d. must be subtracted from the other if they are 
connected in ‘opposition’.

■ Consider Figure 5.25. Three circuit loops can be identified. In the lower 
loop the batteries are connected the same way around, so that the supply 
voltage is 17 V and V2 must be 14 V. In the small loop the sum of the supply 
voltages is 15 V, which must equal V1. In the outer loop the batteries are 
in opposition so that the total supply p.d. is 2 V, which equals 14 + 3 − 15. 
(The 15 is negative because the current through it is being driven in the 
opposite direction.)

Key concept
Kirchoff’s second law: the 
sum of the p.d.s around any circuit 
loop always adds up to zero, but it 
is necessary to distinguish between 
components that are transferring 
energy to the current and those that 
are transferring energy from the 
current to other forms.

6 V

9 V
3 V

8 VV2

V1

Figure 5.25
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 Solving problems involving Kirchhoff’s circuit laws 
■ Both laws can used together to determine currents flowing in circuits with 

more than one loop and more than one power supply.

QUESTION TO CHECK UNDERSTANDING
42 Determine all three currents in the circuit shown in Figure 5.26.

6.0 V

6.0 V 12.0 V

50 Ω 100 Ω

20 Ω

Figure 5.26

Power dissipation 
■ The defining equations for p.d. and current can be combined to produce an 

equation for electrical power dissipation in a resistance, P = VI (unit: watt, W).
■ The total energy supplied in a time t can be determined from energy = VIt.

■ Using R = V/I, it can be shown that the power is also given by: P = I 2R = 
VV
RR

22

.

■ Energy delivered by electricity to our homes is bought and paid for in the unit 
of kilowatt-hour (rather than the much smaller unit of joules). One kilowatt-
hour, kWh is the amount of energy transferred in a device of power one 
kilowatt in a time of one hour. 1 kilowatt-hour (kWh) = 3.60 × 106 J.

 Solving problems involving potential difference, 
current, power and resistance 

QUESTIONS TO CHECK UNDERSTANDING
43 a What current flows through a 230 V domestic water heater which has a 

power of 2.5 kW? 

b How long will it take this heater to transfer 106 J of energy? 

c What is the resistance of the heater?

44 If an electrical power line had an effective resistance of 0.2 Ω km−1, what 
power loss would occur in a 20 km cable if the current was 50 A?

45 a If the p.d. across a resistor is doubled, by what factor does the power 
dissipated change? 

b If a fixed p.d. is connected across a variable resistor, how does the power 
dissipated change if the resistance is doubled? 

46 If the cost of electricity is 10 cents per kWh, how much will it cost every 
week to use a 150 W television for 4 hours a day?

Describing practical uses of 
potential divider circuits 
■ Sensors are components that respond to a difference in a physical property 

with a corresponding change in resistance (or other electrical property). 
The resistance of a light-dependent resistor (LDR) decreases with light 
intensity; the resistance of most thermistors decreases as the temperature 
increases; the resistance of a strain gauge increases as it gets longer.

■ Sensors are often connected in series with another resistor and a power source 
(battery), so that they share (divide) the total p.d. When the resistance of the 
sensor changes, so too do the p.d.s, and the changing p.d.s can be used to turn 

Key concept
Electrical power, P = VI  
(unit: watt, W)

Key concept
The voltage across a sensor in a 
potential divider can be used to 
control the operation of another 
part of the circuit.



5.3 Electric cells 89

another part of the circuit on or off. Such arrangements are another example 
of potential dividing circuits.

■ Figure 5.27 shows an example. When the light intensity on the LDR increases, 
its resistance decreases and the p.d. across it falls, while the p.d. across the 
variable resistance rises by an equal amount. Vout can be used to control 
another part of the circuit (a light perhaps). The value of the variable resistor 
can also be changed in order to adjust Vout.

QUESTION TO CHECK UNDERSTANDING
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Figure 5.28

47 Figure 5.28 shows how the resistance of a certain kind of thermistor varies 
with temperature. 

a Describe this behaviour. 
b Estimate its resistance at 15 °C. 
c Draw a potential dividing circuit including a 12 V battery, a thermistor and a 

0–50 kΩ variable resistor, that could be used as an input to a circuit designed 
to switch on a heater when the temperature went below a certain value. 

d If the variable resistor was set at a value of 25 kΩ, what was the voltage 
across it when the temperature was: i 15 °C, ii 100 °C?

e Suggest why the value of the variable resistor might be changed.

NATURE OF SCIENCE

 Peer review
In the modern scientific community the results of any new research are often 
published world-wide (perhaps after patenting!) and therefore subjected to very close 
and prompt scrutiny by the researchers’ fellow scientists. The status and reputation 
of the researchers involved will not stop critical analysis. This is called peer review, 
and it is a key component of modern science. However, in the past things were very 
different. Apart from the fact that all communication was much slower, scientists 
tended to work more individually and their social status and reputation were 
considered important factors in judging their work. The initial rejection of Ohm’s 
law (Barlow’s ideas were given greater credence) is a good example of this prejudice. 

5.3 Electric cells
Essential idea: Electric cells allow us to store energy in a chemical form.

Cells 
■ Electric cells use chemical reactions to transfer energy to electric currents. A 

battery consists of two or more cells, although the term is also very commonly 
used for single cells. 

■ The simplest cells have two electrodes, made from different conductors (usually 
metals or graphite), which are placed in an electrolyte (a solution or gel or paste 
that contains mobile ions). See Figure 5.29 for a basic example. An electrode 
is the name that we give to any conducting contact made with a non-metallic 
component (like an electrolyte) in a circuit. This physics course does not expect 
students to have knowledge of the chemical changes that occur inside a cell. 

Key concept
Chemical reactions in an electric 
cell can transfer energy to an electric 
current flowing through it. In some 
cells, called secondary cells, the 
reactions can be reversed, so that the 
cell can be recharged and used again.

0 50 k
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to a light

control circuit)

6 V

LDR

Figure 5.27



5 Electricity and magnetism90

V

cathode

electrolyte

Cu Zn

electron
flow

anode

movement
of ions

conventional
current

component

Figure 5.29

■ The electrodes are called the anode and the cathode. Conventional 
current flows from the circuit into a component through the anode and 
out from the cathode. The free electrons in the circuit flow the other 
way. On a cell the anode is marked negative (because conventional 
positive charge flows into it) and the cathode is marked positive.

■ The useful voltage (terminal potential difference) produced by a cell depends 
on the materials used, but not on the physical dimensions of the cell. 

■ Figure 5.30 shows a typical ‘dry cell’ which might be used in a torch. 
(Details do not need to be remembered.)

■ If a cell has to be discarded after the chemical reactions have finished, 
it is known as a primary cell. These are the cheapest types of cell, but 
the disposal of large quantities of batteries causes pollution problems.

■ The useful energy stored in a cell or battery is not usually given in joules. 
Instead, battery manufacturers use the units of A h or W h (both assume 
the voltage is constant). For example, a 12 V, 150 A h car battery should 
be able to provide a 1 A current at 12 V for 150 h. Using energy = VIt 
shows that this is equal to 6.48 × 106 J. The same energy could supply, for 
example, 3 A for 50 h. This amount of energy is equivalent to 1800 W h.

Secondary cells 
■ In some types of cell it is possible to reverse the chemical changes which 

transferred the energy and thereby enable the re-use of the cell. These cells 
are called secondary cells and the process is called charging or recharging 
the cell (battery). The cells and batteries used in mobile phones and cars are 
obvious examples of secondary cells. When energy is supplied to a current in a 
circuit, we say that the cell is discharging.

■ Figure 5.31 shows a car battery with six secondary cells which are 
automatically recharged while the car engine is operational.

Expert tip 

A great deal of on-going scientific research is taking place into the design 
of secondary cells. The aims are to (i) improve the energy density, increasing 
the energy that can be stored in each cm3, so that the size of the cells can be 
reduced; (ii) reduce the time needed for recharging; (iii) increase the number of 
times a cell can be recharged.

 Identifying the direction of current flow required to 
recharge a cell 

■ Figure 5.32 shows how a recharging voltage needs to be connected. The 
magnitude of the recharging voltage is the same as the voltage provided by the 
cell in normal use.

Common mistake

The direction of currents (or electrons) 
into or out of components with 
electrodes can cause confusion. This is 
usually because we need to distinguish 
between what is happening inside the 
component from what is happening 
in the rest of the circuit. Conventional 
current flows from a circuit into an 
anode, but inside the device it flows 
out of the anode.

Figure 5.31

Key concept
The current needed to recharge 
a secondary cell must flow in the 
opposite direction to the current 
flow in normal use.
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Describing the discharge characteristic 
of a simple cell (variation of terminal 
potential difference with time)
■ When we use a battery we want the voltage that is supplies (its terminal 

potential difference) to stay constant for as long as possible. If, during use, the 
voltage decreased slowly, it would probably mean that battery became of no use 
while there was still a lot of energy stored inside it.

■ Figure 5.33 shows (in blue) a typical discharge characteristic of a simple cell 
supplying a constant current. The red line shows the behaviour of an ‘ideal’ cell, the 
voltage of which only decreases when all of its stored energy had been transferred. 
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Investigating practical electric cells 
(both primary and secondary) 
■ The discharge characteristic of a store-bought cell is an experiment which may 

take many hours and is well suited to the collection of measurements using 
data-loggers and computer analysis. Similarly, the charging of a secondary cell 
can be investigated.

■ There are a great number of variables that can be altered in laboratory 
constructed primary cells, so there are many possible investigations.

QUESTIONS TO CHECK UNDERSTANDING
48 A mobile phone battery was completely discharged when it was connected to a 4 V ‘charger’. When completely charged 

it stores 50 kJ of chemical energy. Sketch a graph to show how the charging current might vary with time. Include 
estimates of numerical values.

49 The battery for a mobile phone is rated at 3.8 V, 2800 mAh.

a Is it a primary or secondary cell? 

b How much energy (J) is stored in a charged battery? 

c If the chemicals inside the cell have a volume of 6.5 cm3, what is their energy density when fully charged?

50 Estimate the energy stored in the battery whose discharge characteristic is shown in Figure 5.33. Assume that the 
discharge current was a constant 2.0 A.

51 Outline an experiment to investigate the discharge characteristic of a store-bought 1.5 V battery. 

Internal resistance 
■ Figure 5.34 shows a common way of 

representing a cell with its internal 
resistance: as if they were separate 
components. But the point between 
the cell and the internal resistance is 
imaginary, it cannot be accessed.

Key concept
The discharge characteristic of a 
simple cell shows that its terminal 
p.d. remains almost constant 
until most of its energy has been 
transferred.

Figure 5.33

Key concept
Batteries and other sources of 
electrical power are not perfect 
conductors of electricity. They 
all have resistance, called their 
internal resistance, r.

Expert tip

The area under a discharge 
characteristic, for any chosen time t 
equals Vt, and since the total energy 
transferred in time t equals VIt, we can 
use the area to determine the energy 
transferred by a constant current. 
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r
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Figure 5.34
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■ It may be thought desirable that the internal resistance of a power source 
is much less than the resistance of the rest of the circuit, it may then be 
described as negligible and therefore be ignored in any calculations. In 
examination questions it is common to assume that internal resistance is 
negligible unless it is mentioned (because that question is about internal 
resistance specifically).

■ However, in some circuits, a value for the internal resistance of the source 
must be included in a calculation of the total resistance of the circuit (= R + r).

■ In this course we will assume that the internal resistance of a source is 
constant.

Terminal potential difference 
■ Terminal potential difference can be measured directly and easily with a 

voltmeter connected in parallel with the terminals. It may not be constant. 
It is important to distinguish between terminal potential difference and 
electromotive force (emf).

Electromotive force (emf) 
■ The emf of a battery, for example, is the total energy per coulomb that can be 

transferred from chemical energy within it.
■ The term electromotive force may be considered to be misleading because it is a 

potential difference not a force. Simply using the initials emf is recommended. 
 We may refer to the emfs produced by any device which transfers another 

form of energy to electrical energy: cells, batteries, dynamos, generators, 
photovoltaic (solar) cells and microphones.

 When a current flows through an energy source which has internal resistance, 
some energy will be dissipated as internal energy within the source. This means 
that the terminal potential difference will be less than the emf. The difference 
is often called lost volts.

■ The emf of a source cannot be measured directly with a voltmeter unless the 
internal resistance is negligible and/or a very high resistance voltmeter is used. 

■ The high-resistance voltmeter in the circuit shown in Figure 5.35 is 
measuring the emf of the cell when the switch is open. But when the 
switch is closed and a current flows, the voltmeter reading (which shows the 
terminal p.d.) will decrease because of the voltage ‘lost’ across the internal 
resistance (Ir).

 Solving problems involving emf, internal resistance 
and other electrical quantities 

■ emf = terminal potential difference + lost volts
■ Terminal potential difference V = IR; lost volts = Ir
■ d = IR + Ir = I(R + r)

 Determining internal resistance experimentally 
■ Internal resistance and emf of a cell can be determined experimentally by 

using a high-resistance voltmeter to measure the voltage across the cell 
when there is no current flowing (= ε), measuring the current, I, through a 
known resistor, R, and substituting into the equation above to determine the 
internal resistance.

■ The accuracy of the experiment would be improved by using a variable resistor 
and collecting a range of different current and voltage readings.

Key concept
The terminal potential 
difference of a battery or power 
source is the voltage across its 
terminals, which is also the voltage 
across the rest of the circuit.

Key concept
The electromotive force (emf), 
ε, of a cell or any other source of 
electrical power, is defined as the 
total energy that can be transferred 
in the source per coulomb passing 
through it.

R
circuit 
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voltmeter

V

, r

Figure 5.35

Key concept
The size of the lost volts (Ir) 
increases with the size of the 
current in the circuit. That 
is, when a greater current is 
taken from a source which has 
significant internal resistance, the 
useful terminal p.d. falls; it is not 
constant.
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QUESTIONS TO CHECK UNDERSTANDING
52 A battery of emf 1.5 V and internal resistance 0.5 Ω is connected to a 5.0 Ω resistor. 

a What current flows in the circuit? 

b What reading will be seen on a voltmeter connected across the battery?

53 Explain why the headlights of a car may go slightly dimmer when the engine 
is started.

54 When a battery was connected to a resistor of 4.0 Ω the current was 1.0 A, 
but the current fell to 0.50 A when the resistance was increased to 10 Ω. 
Determine the emf and internal resistance of the battery.

55 Explain why a high-voltage supply for use in school demonstrations has a 
very large internal resistance included inside it.

56 Three cells, each of emf 1.6 V and internal resistance 0.4 Ω, are to be 
combined to make a battery. What are the four possible arrangements, and 
their overall emfs and internal resistances?

57 a Describe an experiment using a variable resistor to determine the 
internal resistance and emf of a shop-bought battery. Explain what 
readings you would take, how you would represent them graphically 
and how you would use the graph to get the results. 

b How would you expect the experimental value of the emf to compare to 
the value written on the side of the battery?

Expert tip

As well as the emf, the internal 
resistance of a battery is an important 
factor that has to be considered 
when a choice is made of which 
battery to use in a particular device. 
For example, the maximum power is 
transferred from a battery to a circuit 
when r = R.

NATURE OF SCIENCE

 Peer review
The growth in the use of secondary cells (and the devices they power, like smart 
phones and tablets) in recent years has been much greater than would have been 
generally predicted some years ago. At the same time there have been increasing 
environmental pollution issues concerning the disposal of electronic devices and 
their batteries. Society has to decide whether the risks of new technologies are 
worth accepting for the benefits gained. But that assumes, naively, that benefits 
and risks can be assessed in advance of new discoveries and inventions.

5.4 Magnetic effects of 
electric currents

Essential idea: The effect scientists call magnetism arises when one charge moves 
in the vicinity of another moving charge.

Magnetic fields 
■ We say that there is a magnetic field around a bar magnet because in that 

space another magnet or a magnetic material would experience a magnetic 
force. This is similar in principle to the gravitational fields around masses, 
and the electric fields around charges. 

■ However, we need to know more about the origins of magnetism before we 
can define magnetic field more generally. All magnetic fields are produced by 
moving charges. (There are electric fields around all charges, whether they are 
moving or not.) A flow of charge is a current, so all currents are surrounded 
by magnetic fields (and electric fields).

■ A few materials have permanent magnetic properties because of the 
way in which charges (electrons) move inside atoms. The magnets we see in 
everyday life are made from such materials. A full explanation of permanent 
magnetism is a complex topic and it is not part of the IB Physics course.

Magnetic poles 
■ Magnetic forces may be attractive or repulsive (like electric forces, but unlike 

gravitational forces). This means that we must identify two different ‘types’ of 
magnetism, although they always occur in pairs. We call them north poles and 
south poles (compare with positive and negative for the two types of charge).

Key concept
A magnetic field is the a region around 
moving electric charge (current) 
in which another moving charge 
(current) would experience a force.
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■ A simple bar magnet has a north pole at one end and a south pole at the other. 
They got these names because a freely supported bar magnet will twist until it 
is pointing N↔S. The end closer to the geographic north is called the north 
(seeking) pole, the other end is called the south (seeking) pole. 

 This property has made freely supported bar magnets very useful for 
determining geographic directions. As such they are examples of compasses. 

 The force between similar poles (N and N, or S and S) is repulsive. The force 
between opposite poles (N and S) is attractive. If two bar magnets are brought 
close to each other and at least one is free to rotate, the forces will result in the 
magnets aligning. 

■ The Earth has a magnetic field which behaves like an enormous bar magnet 
with a magnetic south pole near the geographic north pole. This is why the 
magnetic north pole of a compass needle always points to geographic north. 
See Figure 5.36.

Permanent magnetic field patterns 
■ Magnetic fields are represented in drawings by field lines. Electric and 

gravitational fields are represented in similar ways.

■ In any given field pattern, the field is strongest where the lines are closest. 
Field lines can never cross each other.

 Sketching and interpreting magnetic field patterns 
■ The basic magnetic fi eld pattern around a bar magnet is shown in Figure 5.37, 

which includes a small plotting compass indicating the direction of the fi eld at 
one point.

 The fi eld between bar magnets is shown in Figure 5.38.
 In each of these three diagrams it has been assumed that the magnets’ fi elds 

are much stronger than the ever-present magnetic fi eld of the Earth (which has 
been ignored).

N S

Figure 5.37  

Magnetic field patterns around currents 
■ The magnetic fields produced by currents have a very wide range of 

applications, including electromagnets, generators, motors, and transformers.
■ The basic field (shown in the diagram on the left-hand side of Figure 5.39) is 

produced by a direct current flowing in a long straight wire.
 The field is circular and the separation of the lines increases with distance 

from the wire because the field is getting weaker.
■ Increasing the current increases the strength of the magnetic field. Reversing 

the direction of the current reverses the direction of the field. We say that the 
polarity has been reversed.

 Determining the direction of the magnetic field 
based on current direction 

■ Although the fi eld is circular, it still has direction. The direction can be 
determined using the ‘right-hand grip rule’ as shown in the right-hand side 
of Figure 5.39: if the thumb points in the direction of the current, the fi ngers 
indicate the direction of the fi eld. 

Earth

S

N

Figure 5.36

Key concept
A magnetic field line shows the 
direction of force that would be 
exerted on a (hypothetical) single 
north pole placed at that point (from 
magnetic north to south, the same as a 
compass points). 
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Figure 5.39
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Figure 5.38
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 Magnetic fields around currents in coils and 
solenoids 

■ The easiest way of producing a stronger field is by wrapping the wire round and 
round to make a coil. Each turn adds approximately equally to the strength of 
the field.

■ A coil which is made by wrapping turns of insulated wire closely together, 
but without overlapping them, is called a solenoid. Solenoids are very useful 
because of the strong uniform magnetic fields that can be produced inside them.

■ Figure 5.40 represents the magnetic field in and around the current in a 
solenoid (there are usually many more turns than shown in this figure). The 
polarity can be determined by careful use of the ‘right-hand rule’. Reversing the 
current reverses the poles. The strength of the field depends on the number of 
turns per cm and the current.

■ Soft iron has the very important advantage of gaining and losing its 
magnetism very quickly. This makes it ideal for electromagnetic devices (e.g. 
electromagnets).

■ A steel core also has good magnetic properties but it tends to retain its 
magnetism after the current has been switched off. This means that the 
magnetism is not easily controlled.

■ The permeability of free space is an important fundamental constant, 
which is given the symbol μ0. Its value is 4π × 10−7 T mA−1. All other materials 
have magnetic permeabilities with higher values.

QUESTIONS TO CHECK UNDERSTANDING
58 a Sketch the magnetic field pattern in a plane perpendicular to a wire 

carrying a current perpendicularly into the paper you are drawing on. 

b Sketch the magnetic field pattern in the room where you are reading this. 
Include a small circle with an arrow inside to represent the direction in 
which a compass would point.

59 a Make a copy of Figure 5.41, which shows how a strong uniform magnetic 
field can be produced between the poles of a U-shaped soft iron core. 

a Label the north and south poles. 

b Draw field lines to represent the uniform field produced. 

c Give two reasons why soft iron is used for the core of this electromagnet.

coil with
many turns

I

iron
core

strong
uniform field 

Figure 5.41

Magnetic force 
■ When a current flows across a magnetic field, the field due to the current and 

the external field combine to produce a force on the current. The force is 
perpendicular to both the plane that contains the field and the direction of 
the current. See Figure 5.42. This is often called the motor effect.

N

S

strip of

force

aluminium
foil

Figure 5.42

Key concepts
Strong magnetic fields are 
produced inside coils and solenoids 
carrying direct currents. Placing a 
core made of soft (pure) iron inside 
will make the field much stronger.

Permeability represents the 
magnetic properties of a medium.

current in

S

current out

N

Figure 5.40
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 Determining the direction of force on a current-
carrying conductor in a magnetic field 
thuMb
Motion
or force

First finger
Field

force

field

current

seCond finger
Current

Figure 5.43
■ The size of the magnetic force, F, depends on the strength of the magnetic 

field, B, the magnitude of the current, I, the length of the conductor in the 
field, L and the angle between the current and the field, θ. See Figure 5.44, in 
which the force produced would be perpendicularly out of the page.

uniform
magnetic

field
strength, B

length of
conductor in
uniform field, L

angle between
field and
current, θ

θ

θ

current, I

Figure 5.44

■ The magnitude of force on a current-carrying conductor in a magnetic field 
can be calculated from the equation F = BIL sin θ.

■ We can consider that this equation defines magnetic field strength, B, in 

terms of force per current metre: B = 
θ

F
IL sin

■ The units of magnetic field strength, as can be seen from the equation, are 
N A−1 m−1, more commonly called teslas, T.

■ The effect shown in Figure 5.42 is commonly known at the motor effect, because 
magnetic forces can be used to produce continuous rotation of a current-
carrying coil in a magnetic field (details are not required for this course).

 Solving problems involving magnetic forces, fields 
and current 

Key concepts
The ‘left-hand rule’ can be used 
to predict the relative directions of 
magnetic field, current and force. 
See Figure 5.43.

The same rule can be used to 
determine the direction of forces 
on individual charges.

The magnitude of the force can be 
determined from the equation  
F = BIL sin p.

QUESTIONS TO CHECK UNDERSTANDING
60 A force of 4.3 × 10−4 N was exerted on a wire carrying a current of 3.2 A across a  

magnetic field. The angle between the wire and the field was 60° and the length  
of the wire in the field was 4.8 cm. 

a Sketch the arrangement of the wire and the field, labelling the known quantities  
and the direction of the magnetic force produced. 

b Determine the strength of the magnetic field.
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Magnetic forces on individual 
moving charges 
■ The equation F = BIL sin θ involves macroscopic measurements concerning 

the force on a large number of moving charges in a current, but it can also be 
applied to individual charges. See Figure 5.47, which shows a single charge, q, 
moving with a velocity v across a magnetic field.

B

L

θ

Y
v

v

q

X

Figure 5.47

■ If the charge moves a distance L in time t, velocity, v = L/t. We also know 
that I = q/t. These equations can be combined with F = BIL sin θ to give an 
equation for the force on a single charge moving across a magnetic field:

 F = qvB sin p

 Determining the direction of force on a charge 
moving in a magnetic field 

■ The magnetic force is perpendicular to the field and the velocity of the 
particle.

■ We can use the left-hand rule to predict the direction of the magnetic force on 
moving charges, remembering that the direction of current flow is always that 

Key concept
If beams of charged particles are 
directed perpendiculary across 
magnetic fields, they will move 
along the arcs of circles. The 
radii of their paths can be used 
to determine properties of the 
particles. 

61 Figure 5.45 represents currents flowing in opposite directions in two 
parallel wires. 

a Copy the diagram and sketch the field lines around  
wire Y. 

b Mark on wire X the direction of the force exerted on the current due 
to the current being in the field of Y. 

c Deduce the direction of the force on wire Y.

62 A square coil of wire carrying a current of 0.43 A rotates in a uniform 
magnetic field of strength 0.67 T. See Figure 5.46. If the coil has 500 turns 
(the figure only shows one turn), and the coil has sides of length 2.4 cm, 
calculate the maximum force exerted on one side of the coil.

direction
of current

conductor X conductor Y

Figure 5.45

N S

coil

brush
(fixed)

brush
(fixed)

commutator
(rotates with coil)

Figure 5.46



5 Electricity and magnetism98

of moving positive charge. This will be in the opposite direction to the motion 
of electrons, or negative ions.

 Deflecting particles in magnetic fields 
■ The most common situation is one in which charged particles (in a particle 

beam) are directed to move perpendicular to a magnetic field (so that sin θ = 
1).

■ The resulting force which is always perpendicular to motion will provide the 
centripetal force to make the particles move in the arc of a circle (see Section 
6.1). Figure 5.48 shows the example of the deflection of negative charges 
moving perpendicular to a magnetic field directed out of the paper.

■ If θ is between 0° and 90° the particles will move in a helical path.
■ The magnetic deflection of charged particle beams has some important 

applications, including high-energy nuclear physics accelerators and mass 
spectrometers for identifying isotopes (no details required). Detecting the 
motion of charged particle beams in magnetic and electric fields is often the 
best way of determining the properties of the particles.

 Solving problems involving magnetic forces, fields 
and charges 

Expert tip

In Section 6.1 the equation for any 
centripetal force is shown to be 

F = mv2

r . When compared to

F = qvB, (sin θ = 1), it can be shown 
that the radius of the path of a 
charge moving perpendicularly across 

a magnetic field is given by r = mv
qB .

negative
charges

(e.g. electrons)

Figure 5.48

QUESTIONS TO CHECK UNDERSTANDING
63 Figure 5.49 shows the deflection of charged particles (ions) 

passing perpendicularly across a magnetic field of strength 0.12 T. 

a Are the particles positively or negatively charged? 

b Explain why the paths are arcs of circles. 

c Determine the force on the charges if the ions were all singly 
charged and all travelled at a speed of 4.4 × 106 m s−1. 

d Suggest a possible reason why three different paths are seen.

64 Using knowledge from Chapter 7 on nuclear radiations, 
qualitatively compare the deflections of alpha particles, negative 
beta particles and gamma rays as they pass through the same 
magnetic field.

65 Explain how it would be possible for an electron beam to pass 
through a magnetic field without having its velocity changed, but 
will always be affected by an electric field.

66 A beam of electrons is directed at an angle of 45° across a 
magnetic field of strength 38 mT. 

a Sketch this arrangement, including arrows to represent directions. 

b In which direction will the beam be deflected? 

c If the force on the individual electrons was 7.8 × 10−14 N, what was the speed of the electrons?

67 Use the equation r = mv/qB to determine the strength of a perpendicular magnetic field required to make a hydrogen 
ion (proton) travelling at 10% of the speed of light move in a circle of radius 1.0 m.

Figure 5.49

NATURE OF SCIENCE

 Models and visualization
One of the reasons that the study of fields is a difficult concept in physics 
is that they cannot be seen, although any empty space with a field is 
fundamentally different from a space without it. ‘Lines of force’ were first used 
in the early nineteenth century and the ‘simple’ representation of fields with 
lines is a surprisingly powerful visualization tool, providing a mental picture 
(model) that is useful for both students and experienced scientists.



Circular motion and gravitation 6
6.1 Circular motion 
Essential idea: A force applied perpendicular to its displacement can result in 
circular motion.

■ Many objects move in circles, or paths which follow the arcs of circles. In 
particular, Section 6.2 concentrates on the motion of planets and satellites. 

■ If an object spins on its own axis we describe it as a rotation. If an object moves 
around a separate centre we describe it as a revolution. The Earth revolves 
around the Sun and at the same time rotates on its own axis.

■ Before we can develop an understanding of circular motion, we need to be 
clear about the measurement of angles.

Degrees and radians 
■ The use of degrees to measure angles is familiar to us in everyday life and 

in our early studies in mathematics and science, but it is not convenient 
mathematically because it is based on an arbitrary and historical choice of 360° 
for a complete revolution. The ratio of the circumference of a circle, 2πr, to its 
radius, r, is a more logical basis for the measurement of angles. In this system 2πr

r  
(= 2π) becomes the measurement of one revolution, rather than 360°.

■ Although an angle like 2π is just a ratio, it is called 2π radians, commonly 
reduced to rad. 

 180° = π rad. 1 rad = 180°
π  = 57.3°. 

■ In general, an angle in radians is equal to the distance along the arc of a circle 
divided by the radius, (rad) s

r in Figure 6.1a.

Period, frequency, angular 
displacement and angular velocity
■ For the common situation of an object moving continuously and uniformly 

in circles, the angular velocity and the linear speed of the object around the 
circumference will both be constant, and they are closely related.

■ For continuous uniform circular motion, = 2π
T = 2πf.

■ The linear speed of an object moving uniformly in a circle, v = 2πr
T

.
■ Therefore, angular velocity, , and linear speed, v, are related by the simple 

equation v = r. See Figure 6.2.
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Figure 6.2

Key concepts 
The period, T, of a circular 
motion is defined as the time 
taken for the object to complete 
one rotation (2π radians or 360°).

The frequency, f, of circular 
motion is defined as the number  
of rotations in unit time. f = 1

T
(unit: Hz).

Angular displacement, , is 
defined as the angle through 
which a rigid object has rotated 
from a fixed reference position. 

Angular velocity,  
 = angular displacement

time ; = Δ
Δt . It 

has the unit rad s−1. 
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 Solving problems involving period, frequency, 
angular displacement, linear speed and angular 
velocity 

Common mistake

Based largely on their experiences in moving vehicles, many people identify a 
force acting outwards on them when they go around a corner (often called 
a centrifugal force). For example, a passenger may feel that they are forced 
outwards against the side door of a car going quickly around a corner. From their 
frame of reference inside the moving car, this may be correct, but the more useful 
perspective is that of an external observer who is not in the car. He would see the 
car door pushing inwards on the passenger, making him move around a corner, 
rather than continuing in a straight line.

QUESTIONS TO CHECK UNDERSTANDING
1 What is the angular velocity of the minute hand on a clock?

2 An object is moving at a constant linear speed of 2.8 m s−1 around a circle 
with radius 50 cm. 

a What are its period and frequency?

b Determine the angular velocity of the object.

c Through what total angle will it pass in 10 s?

3 The wheel on a car has a diameter of 70 cm.

a How many times does the wheel rotate when the car travels 1.00 km?

b What is the linear speed of a point on the circumference of the wheel if 
the car travels at a constant speed of 10 m s−1?

c Calculate the angular velocity of the wheel at that speed.

d Determine the frequency of the wheel’s rotation.

4 As the Earth spins, do all points on the surface have the same: i angular 
velocity, ii linear speed? Explain your answers.

Centripetal force 
■ From Newton’s first law of motion (Section 2.2), we know that any object that 

is not moving in a straight line at a constant speed must have a resultant force 
acting on it.

■ We say that any force which is producing circular motion is acting as a 
centripetal force. It is important to realize that centripetal force is not another 
type of force. The term ‘centripetal’ simply means that the force being 
discussed (of whatever origin) is causing circular motion.

■ Any centripetal force must continuously change direction so that it is always 
directed towards the centre of the circle. See Figure 6.3.
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Figure 6.3

Key concepts 
Any force which results in 
circular motion is described as a 
centripetal force.

Centripetal forces always act 
perpendicularly to instantaneous 
motion.

■ Centripetal forces can have a variety of different origins, for example, tension, 
friction, gravitational, electrical, magnetic or reaction forces. Some examples 
are provided below.

 Identifying the forces providing the centripetal 
forces such as tension, friction, gravitational, 
electrical, or magnetic 

■ Tension provides the centripetal force on an object which is spun around 
(almost) horizontally on the end of a length of string.

■ Friction provides the centripetal force for people or cars moving around 
corners.
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 Gravitational forces provide the centripetal forces for satellites moving around 
the Earth, or planets moving around the Sun.

 Electrical forces provide the centripetal forces that keep electrons moving 
around nuclei in atoms.

 Magnetic forces provide the centripetal forces which maintain particle beams 
in circular paths in nuclear accelerators (see Section 5.4).

■ Reaction forces are also commonly involved with circular motion. As examples 
consider (i) water in a bucket being whirled in a vertical circle (consider the 
water, not the bucket); (ii) a cyclist moving at speed around a banked track. 
Friction between the track and the tyres is not enough to provide sufficient 
centripetal force at the high speed. See Figure 6.4, in which the normal 
reaction force on the tyre has a horizontal component acting towards the 
centre of the circle.

banked
road surface

Rv

RH

R

Figure 6.4

QUESTIONS TO CHECK UNDERSTANDING
5 Look at Figure 6.5. The girl on the swing is moving along the arc of a circle.

a What is providing the centripetal force on: i the swing seat, ii the girl?

b Draw a free-body diagram to show the forces acting on the girl 
(represented as a point mass). 

Figure 6.5

6 What provides the centripetal force when a plane changes direction (at a 
constant altitude)?

7 See Figure 6.6.

a What provides the centripetal force for these athletes running on a 
curved track?

b What design features make sure that this force can be large enough for 
high speeds?

  Figure 6.6
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Centripetal acceleration 
■ Any object which is moving in a circular path has a continuously changing 

velocity, even if it has a constant speed (because velocity is a vector quantity). 
This means that there must be an acceleration which is directed in the same 
direction as the force, towards the centre of the circle. 

■ Centripetal forces produce centripetal accelerations. See Figure 6.7.

mass

circular
path

instantaneous velocity

centripetal
force and
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Figure 6.7

Figure 6.8

Cr

Figure 6.9

bucket
of water

Key concept 
The centriptal force needed to 
keep a mass m moving with a 
speed v in a circle of radius  
r can be calculated from  
F (= ma) = mv2

r  = m 2r.

Key concept 
Any object moving along a circular path has a centripetal acceleration, a, 
towards the centre of the circle.
a = v

2

r

Calculating centripetal force 
■ Newtons second law (Section 2.2), F = ma, can be used to obtain an equation 

for centripetal force.
■ This equation enables us to calculate the theoretical force needed for a 

particular circular motion. The actual force acting may, or may not, be able 
to provide a force of the required magnitude. For example, we could use the 
equation above to calculate the centripetal force needed for a car to go around 
a corner at a particular speed, but in practice the actual friction between the 
road and the tyres might not be enough.

Qualitatively and quantitatively 
describing examples of circular 
motion including cases of vertical 
and horizontal circular motion 
■ Consider Figure 6.8, which shows a coin, C, of mass 24 g, on a rotating 

turntable. The force of friction provides the necessary centripetal force and 
the coin stays in the same place on the turntable. If it completes 5 rotations 
in 9.8 s the angular velocity, , is 10π

9.8  =3.2 rad s−1. If the radius is 8.3 cm, the 
centripetal acceleration is 2r = 0.85 m s−2 and the force of friction providing 
the centripetal force is m 2r = 0.020 N. If the speed of rotation is increased, 
the centripetal force needed to keep the coin in place will also increase. If 
friction cannot provide this force, the coin will slip off the turntable along a 
tangential path.

■ When water in a bucket is whirled in a vertical circle, the reaction force from 
the base of the bucket helps to provide the necessary centripetal force on the 
water. See Figure 6.9. If the angular velocity is great enough, the water will 
remain in the bucket, but the water will lose contact with the base of the 
bucket (at its highest point) if its weight is greater than the centripetal force 
needed at that velocity. That is, if mg >m 2r. For example, if the radius of the 
circle is 1 m and one revolution is completed every 2 s, the water will just stay 
in the bucket.

 Solving problems involving centripetal force, 
centripetal acceleration, period, linear speed and 
angular velocity 

■ Since v = r, the equation for centripetal acceleration can also be written  
as a = 2r.

 Since v = 2πr
T  the equation can also be written as: a = 4π2 r

T 2 .
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QUESTIONS TO CHECK UNDERSTANDING
8 A small rubber ball on the end of a thin string was spun in vertical circles.

a What provided the centripetal force on the ball?

b Draw a free-body diagram to show the forces acting on the ball when the string was horizontal.

c The speed of rotation was increased until the string broke. Explain why the string was most likely to break when the 
ball was at the lowest point.

d In which direction will the ball then move?

9 A car of mass 1400 kg moves with a constant linear speed of 12 m s−1 around a bend in a horizontal road which is the 
arc of a circle of radius 200 m.

a Calculate the centripetal acceleration of the car.

b What is the magnitude of the centripetal force on the car?

c Determine a value for the coefficient of dynamic friction between the tyres and the road.

10 The Earth moves around the Sun in an orbit with an average radius of 150 million kilometres.

a What provides the centripetal force on the Earth?

b The same magnitude force acts on the Sun. Suggest its effect.

c What is the angular velocity of the Earth around the Sun?

d Calculate the magnitude of the centripetal force acting on the Earth. (Mass of the Sun = 2.0 × 1030 kg; mass of the 
Earth = 6.0 × 1024 kg.)

11 An alpha particle beam has particles with masses of 6.6 ×10−27 kg and speeds of 1.5 × 107 m s−1.

a How can the beam be made to move in a circular path?

b What magnitude centripetal force on each particle will make the beam move in a circular path of radius 200 cm?

c Use the equation F = qvB sin (Section 5.4) to determine the strength of the magnetic field that produces this path.

12 A satellite orbits at a distance of 12 750 km from the Earth’s centre. At this height the acceleration due to gravity, g, is 
2.45 m s−2. Calculate the period of the satellite and how many times it orbits the Earth daily.
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Figure 6.10

NATURE OF SCIENCE

 Observable universe
Section 6.1 is another example which shows how a vast range of different common 
observations can, given sufficient time and insight, be reduced to having a common 
explanation, in this case they are all based on the concept of centripetal force. 

It is a basic assumption of science that all our observations can, in principle, be 
explained. Scientists generally do not believe that there are things beyond reason, 
even if there are always some phenomena which are currently unexplained.

6.2 Newton’s law of gravitation 
Essential idea: The Newtonian idea of gravitational force acting between two 
spherical bodies and the laws of mechanics create a model that can be used to 
calculate the motion of planets.

■ Attractive gravitational forces exist between all masses. The same force 
acts on both masses (even if their masses are different). See Figure 6.10, 
which shows the forces on two masses, M and m, separated by a distance r. 
(Sometimes m1 and m2 are used instead.)

Newton’s law of gravitation 
■ The magnitude of the gravitational force between two isolated point 

masses is proportional to the product of the masses and inversely 
proportional to the square of the distance between them. This is similar 
in principle and mathematical form to Coulomb’s law (Section 5.1). A 
point mass is a theoretical concept used to simplify the discussion of 
forces acting on objects.

Key concept 
Newton’s universal law of 
gravitation: F = GMm

r2
 , where 

G is the universal gravitation 
constant, which has a value of 
6.67 × 10−11 N m2 kg−2.
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■ This law applies to point masses, but it can also be used outside of large spherical 
masses, like planets (of evenly distributed density), which have gravitational 
fields that behave as if all their masses were concentrated at their centres. r is 
then the separation of the centres of the two masses concerned. 

Expert tip

There is a very strong analogy between Coulomb’s law and Newton’s law. The 
similar mathematical equations both represent fundamental forces which follow 
an inverse square law relationship with distance. Understanding one of these laws 
greatly helps you to understand the other. The magnitudes of the two constants 
involved (k and G) are very different and this reflects the fact that electrical forces 
are much, much greater than gravitational forces (under similar circumstances). 

Gravitational fields 
■ All masses create gravitational fields around themselves, but a gravitational 

field is negligible unless the mass is very large (like the Earth).

 Gravitational field strength 
■ Gravitational field strength can be calculated from g = Fm (unit: N kg−1, but 

m s−2 is equivalent). 
■ The “test mass” involved in the definition of gravitational field strength must 

be so small that it does not affect the field.
■ The gravitational field strength on the surface of the Earth is easily 

determined by weighing a known (test) mass. 

Key concepts
A gravitational field exists 
anywhere where a mass 
experiences a gravitational force.

Gravitational field strength, g, 
at a point is defined as the force 
per unit mass experienced by a 
small test mass at that point.

Common mistake

It is easy to confuse G and g! G is one of the few universal constants in science 
and, as far as we know, it has exactly the same value everywhere and for all time. 
However, g, the strength of a gravitational field, is not a constant. It varies with 
location, although we may loosely describe its value at all points on the Earth’s 
surface as constant.

■ The definition of gravitational field can be compared to similar ones for 
electric and magnetic fields. 

■ Gravitational field strength is a vector quantity, pointing in the direction of 
the force.

 The gravitational force on a mass near to a planet is called its weight. The same 
force acts in the opposite direction on the planet. 

 Since g = Fm, and F = GMm
r2

, the gravitational field strength at a distance r from 
the centre of a planet of mass M is given by g = F = GM

r2
.

■ Figure 6.11 illustrates how the gravitational field strength varies with distance 
from the Earth, following an inverse square law.
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Figure 6.11

Expert tip

Newton calculated the centripetal 
acceleration of the Moon (from a = v2

r ) to 
show that it gave the same value as 
g

602, as shown in Figure 6.11. This was 
conclusive evidence that the inverse 
square relationship was correct.



6.2 Newton’s law of gravitation 105

■ Figure 6.12 shows the inverse square variation of gravitational field strength, g, with distance, r, from the centre of a planet. rP represents the radius of 
the planet. The field strength is greatest on the surface and reduces towards 
the centre because of the way in which the mass of the planet is distributed 
around the point in question.

 Determining the resultant gravitational field 
strength due to two bodies 

■ Sometimes an object may be in two or more significant gravitational fields, for 
example between a planet and a moon. The combined field, in magnitude and 
direction, can be calculated using vector addition of the individual fields. 

■ Figure 6.13 illustrates how the resultant gravitational field varies between the 
Earth and the Moon.
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QUESTIONS TO CHECK UNDERSTANDING
13 a Calculate the gravitational forces between the Earth and the Moon. (Mass of Earth is 5.97 × 1024 kg and the mass of 

Moon is 7.35 × 1022 kg. Their centres are an average 3.84 × 105 km apart.)

b This force keeps the Moon in orbit around the Earth, but does it have any noticeable effect on the Earth?

14 Calculate an order of magnitude for the gravitational forces acting between two cars parked 2 m apart. 

15 Explain why it is very difficult to measure gravitational forces (except for weights).

16 The planet Venus has a mass of 4.9 × 1024 kg and a radius of 6052 km. Determine the gravitational field strength:

a on its surface

b 2000 km above its surface.

17 a At what distance from the Earth’s centre is the gravitational field 
strength 1.0 N kg−1? (Radius of Earth is 6.4 × 106 m.)

b What is the field strength at the altitude of a satellite which is 300 km 
above the Earth’s surface?

18 Figure 6.14 shows a planet of mass 8.3 × 1024 kg and its moon (not to 
scale). At the point P the combined gravitational field strength is zero.

a What is the gravitational field strength at P due to only the planet?

b Determine the mass of the moon.

c What is the combined field at point Q, which is the same distance from 
the Moon as point P? Figure 6.14

planet

moonP

Q2.2 × 108 m

0.22 × 108 m

Key concept
Vector addition (Section 1.3) is 
needed to determine the resultant 
of two gravitational field strengths.
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Circular motion of planets, moons and 
satellites 

 Describing the relationship between gravitational 
force and centripetal force

■ The orbits of the planets around the Sun, and moons and satellites around 
planets, may be considered to be circular (although this is not necessarily true, 
many are elliptical).

■ A satellite is an object which moves in a curved path (orbits) around a much 
larger mass. Satellites may be natural (like the Earth or the Moon), or artificial 
(as used for communication, for example).

 Applying Newton’s law of gravitation to the motion 
of an object in circular orbit around a point mass 

■ The equation in the ‘Key concept’ box reduces to v2 = GM
r . 

■ Since we have seen that field strength g GM
r2 , we can re-write the previous 

equation as v2 = gr, showing directly how the linear speed depends on the field 
strength.

■ Clearly, the speed and period of an orbiting object do not depend on the mass 
of the object (for the same reason that projectiles of different masses follow the 
same trajectories: see Section 2.1). For example, all satellites in circular orbits 
at the same height will take the same time to orbit the Earth.

■ The period of any orbit, T, can be determined by substituting v 2πr
T

 into the 
previous equations.

 The equations above show us that any artificial satellite in a circular orbit must 
be given the right orbital speed, v, for its required distance from the centre of 
the Earth.

Expert tips

The relationship between period and radius of planets orbiting the Sun was first 
identified by Johannes Kepler. Kepler’s third law: r 3

T 2
 = constant (shown by Newton 

to be equal to GM
4π2

 by combining v2 = GM
r 

 with v = 2πr
T

).

We are aware of our own weight because of the reaction force from the ground 
pushing up on us. If the ground suddenly disappeared we would accelerate 
downwards and feel ‘weightless’, even though our weight would not have 
changed. Similar sensations can be felt on some fairground rides. For the same 
reasons, any person in or on a container/vehicle which is in ‘free-fall’ (gravity is 
the only force acting), such as in a satellite orbiting the Earth, can lose contact 
with the surrounding surfaces and appear weightless.

Key concept
Gravity provides the centripetal 
force for the orbits of moons, 
satellites and planets. So that,  

F = mv 2
r  = GMm

r2  (assuming that the 

object is acting like a point mass 
and the orbit is circular).

Key concept
The linear speed, v, of any mass in 
a circular orbit depends only on the 
mass of the central object, M, and 
the separation of their centres, r.

(v2 = GM
r )
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 Solving problems involving gravitational force, 
gravitational field strength, orbital speed and 
orbital period 

QUESTIONS TO CHECK UNDERSTANDING
19 The mass of the Sun is 2.0 × 1030 kg.

a Determine the gravitational field strength of the Sun at a distance of 
150 million kilometres from its centre.

b This distance is the average radius of the Earth’s orbit. Use v2 g
r to 

calculate the linear speed of the Earth around the Sun.

c Show that the period of its orbit is one year.

20 Two planets orbit the same star at distances of 4.8 × 1010 m and 7.9 × 
1011 m. If the first planet has a period of 200 Earth days, what is the period 
of the second?

21 What is the required orbital speed for a satellite designed to circle the Earth 
at a height of 1000 km?

22 Ganymede, with a mass of 1.48 × 1023 kg and a radius 2630 km is the 
largest moon in the solar system. It orbits Jupiter and the average 
separation of their centres is 1.07 × 106 km. 

a If Ganymede has an orbit speed of 10.9 km s−1, what is its orbital period?

b What is the gravitational field strength of Jupiter at the height of 
Ganymede’s orbit?

c What is the gravitational field strength of Ganymede on its surface?

23 Calculate the distance from the centre of the Earth to a satellite which has a 
period of 24 h.

NATURE OF SCIENCE

 Laws
Newton’s law of gravitation and the laws of mechanics are the foundation for 
deterministic classical physics. These can be used to make predictions but do not 
explain why the observed phenomena exist.



Atomic, nuclear and 
particle physicsTopic 1 

7.1 Discrete energy and 
radioactivity

Essential idea: In the microscopic world energy is discrete.

Spectra 
■ Spectra are caused by energy changes inside atoms, so the production and 

analysis of spectra (spectroscopy) plays an important part in atomic physics. 
■ In Section 4.4 we saw that a beam of electromagnetic waves (light), containing 

different wavelengths can be dispersed into a spectrum by using a prism. (In 
Chapter 9, for HL students, we see that diffraction gratings can also be used to 
produce spectra.) The visible spectrum of white light is shown in Figure 7.1. 

■ Figure 7.1 is an example of a continuous spectrum in which the colours 
merge into each other and there are no gaps (or lines). Continuous spectra 
are typically produced by very hot objects, for example, the light emitted from 
a filament bulb or from the Sun forms a continuous spectrum. Analysis of 
a simple continuous spectrum does not provide any information about the 
nature of the source of the radiation. 

■ However, analysis of line spectra leads to a great deal of very useful 
information about energy levels within atoms and molecules. There are two 
kinds of line spectra: emission spectra and absorption spectra. 

 Describing the emission and absorption spectra of 
common gases 

■ They are called line spectra because, after the radiation has been made to  
pass through one or more narrow slits placed close to the source and then 
through a prism or grating, the observer sees a series of short vertical lines. 
See Figure 7.2, which shows prisms being used to produce an emission spectrum 
and an absorption spectrum of the same gas. Atoms and molecules in gases can 
be ‘excited’ by using high voltages (or high temperatures).

excited
gas

prism

prismabsorbing
gas

film or
detector emission spectrum

increasing frequency

absorption spectrum

increasing frequency

narrow
slit

narrow
slit

white light
source

Figure 7.2

■ An emission spectrum consists of a series of coloured lines, on a black 
background. Each spectrum is characteristic and unique to the element or 
compound that produced it. In this way, a line spectrum is a useful way of 
identifying unknown substances.

Figure 7.1

7

Key concepts
Line spectra are evidence of 
discrete energy levels within 
atoms.

An emission spectrum is 
produced when excited atoms 
(or ions or molecules), usually 
in a gas at low pressure, emit 
electromagnetic radiation of 
precise wavelengths as excited 
electrons return to lower energy 
levels.
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■ An absorption spectrum consists of a series of black lines on a background of 
an otherwise continuous spectrum. The pattern of lines is the same as from 
the emission spectrum of the same element or compound (because the energy 
transitions are the same).

■ After energy from a beam of radiation has been absorbed by the atoms, it 
is quickly re-emitted, but randomly in different directions. This results in a 
significant drop in intensity for radiation travelling in the original direction.

■ Accurate measurements taken from experiments such as those shown  
in Figure 7.2 can be used to calculate the wavelengths and/or frequencies 
of the radiation that resulted in the lines. This is covered in  
Section 9.3 (HL).

■ The fact that radiation energy can only be emitted or absorbed from atoms at 
certain frequencies is very important because it suggests that these processes 
involve movement between definite atomic energy levels. (If all the 
frequencies of a continuous spectrum were observed, it would suggest that 
atoms could move from any energy to any other energy.)

Discrete energy and discrete energy levels
■ There is energy stored in the electric fields that exist between the charged 

particles of an atom (protons and electrons). But this energy can only exist in 
certain, discrete values. We use the term discrete to describe something which 
is individually separate, rather than continuous.

■ Consider Figure 7.3. This is a simple representation of four energy levels within 
an atom. (In reality there will be many more than four levels.) E4 > E3 > E2 > E1, 
but other than that, Figure 7.3 does not represent any other information about 
the atom. A more detailed energy level diagram of hydrogen is shown later.

■ When an electron in an atom moves between an energy level and a lower 
level, electromagnetic radiation energy is emitted of a certain precise frequency. 
The six possible transitions of Figure 7.3 are shown with blue arrows. 
Similarly, when an atom moves between one energy level and a higher level, 
electromagnetic radiation of a certain precise frequency has been absorbed.

 

E4

E3

E2

E1

  Figure 7.3

 Photons 
■ When a single atom moves from a higher energy level to a lower energy  

level, a single, discrete amount of energy is emitted in the form of 
electromagnetic radiation (commonly light). This tiny ‘bundle’, or ‘packet’, of 
energy is called a photon. The frequency, f, of a photon is proportional  
to its energy, E: E = hf

■ h is called Planck’s constant. Its value is 6.63 × 10−34 J s.
■ Remembering that c = f  (from Section 4.2), E = hf can be re-written to 

directly show the relationship between the emitted wavelength and the 
photon’s energy: λ = hc

E
.

■ Larger energy level transitions within an atom involve photons of higher 
frequencies (and shorter wavelengths).

 An atom can move from a lower energy level to a higher energy level if it 
absorbs a photon of the right energy.

Key concept
An absorption spectrum is 
produced when some wavelengths of 
broad-band (‘white’) electromagnetic 
radiation are absorbed by gaseous 
atoms (or ions or molecules) at low 
pressure, raising the atoms to higher 
energy levels.

Expert tip

The continuous spectra produced by 
the cores of hot stars pass through their 
cooler outer layers, where the presence 
of elements results in an absorption 
spectra being observed on Earth. This 
is how astronomers are able to identify 
the elements present in distant stars. 

Expert tips

Up to this point we have just referred 
to the energy levels of atoms, but 
more specifically, the transitions within 
the atoms that we are describing 
arise as a result of changes in the 
movement and position of electrons 
which, in classical physics, may be 
considered to move around the 
nucleus in fixed orbits. As such, the 
levels may also be commonly referred 
to as the energy levels of electrons. 

There are also important energy levels 
within the nuclei of atoms (discussed 
in Section 12.2 for HL students).

The existence of discrete energy 
levels within atoms was discovered 
long before anyone knew why the 
levels existed. An understanding only 
became possible after the discovery 
of the wave properties of electrons 
(see Section 12.1 for HL students).

Key concept
A photon is a quantum of 
electromagnetic radiation. 
The energy of a photon can be 
calculated from E = hf.
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 We describe electromagnetic radiation and energy levels as being quantized. 
This term may be used to describe anything that can only have certain 
discrete values. (Coins are an everyday example of a quantized system.) The 
minimum possible value of a quantized entity is called a quantum (plural: 
quanta). A photon is a quantum of electromagnetic radiation.

 The fact that electromagnetic radiation behaves as a stream of very many tiny 
energy ‘packets’ called photons conflicts with the wave model discussed in 
Chapter 4. Some properties of radiation (interference, for example) require an 
explanation in terms of waves, but other properties (line spectra, for example) 
need the concept of photons for an explanation. Using both explanations is 
known as wave–particle duality.

■ The various properties of different parts of the electromagnetic spectrum 
(Section 4.2) can usually be explained by considering that the energy they 
transfer arrives in photons of different energies, rather than continuously.

Expert tip

Planck’s constant plays a central role 
in atomic and nuclear (quantum) 
physics. In the IB physics course 
HL students will also meet Planck’s 
constant when studying the wave 
nature of matter (de Broglie’s 
hypothesis) and Heisenberg’s 
uncertainty principle (Chapter 12).

QUESTIONS TO CHECK UNDERSTANDING
1 Calculate the energy carried by a photon emitted by a mobile phone if its 

frequency is 849 MHz.

2 a The spectrum of helium contains a line of yellow light of wavelength 
587 nm. How much energy is carried by a photon of this radiation? 

b Suggest how the element helium was first discovered in the Sun from 
the spectrum detected on Earth.

3 A particular kind of photon carries an energy of 9.1 × 10−19 J. 

a What is this energy when expressed in electronvolts? 

b What is the wavelength of this photon? 

c What part of the electromagnetic spectrum is it from?

4 A small radiant heater has a power of 800 W. It emits infrared and light with 
an average frequency of 5.0 × 1013 Hz. Estimate the number of photons 
emitted every second by this heater.

5 Compare the energy size of photons of light and photons of gamma rays, 
and use the difference to suggest why these two radiations have very 
different effects on the human body.

 Transitions between energy levels 
■ Figure 7.4 illustrates some of the many energy levels of hydrogen, labelled 

in both joules and electronvolts. Hydrogen, the simplest atom, has the 
simplest set of energy levels to understand and its study was of great historical 
importance.

Key concepts
When electrons move between 
energy levels, photons are emitted 
or absorbed. The photon energy 
(hf) equals the difference in energy 
levels.
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Figure 7.4
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■ If an electron in the ground state is given +13.6 eV of energy it will just be able 
to escape from a hydrogen atom, meaning that the atom would be ionized. The 
free electron is then said to have zero electrical potential energy, but when 
it was in the ground state its energy was 13.6 eV less, so in its ground state its 
energy is given a negative value (−13.6 eV). All the energy states of bound 
electrons have negative values for this reason.

 Solving problems involving atomic spectra, including 
calculating the wavelength of photons emitted 
during atomic transitions 

■ We can use the difference in energies of any two levels to calculate the 
frequency (and/or wavelength) of a photon emitted or absorbed by a transition 
between those levels.

■ For example, the first and third levels above the ground state in Figure 7.4 are 
−0.54 × 10−18 J and −0.136 × 10−18 J, so that the difference in energy is −0.404 × 
10−18 J. E = hf can be used to calculate the frequency of the photon which would 
be involved with this transition (6.09 × 1014 Hz, which is in the blue section of 
the visible spectrum)

■ Alternatively, the wavelength can be calculated directly from =  hc
E

.

QUESTIONS TO CHECK UNDERSTANDING
6 Consider again Figure 7.4. 

a What frequency photon is emitted when an electron in an atom 
moves from the second energy level above the ground state 
down to the ground state? 

b Identify a possible transition that results in the emission of a 
photon of wavelength 4.4 × 10−7 m. 

c In which part of the electromagnetic spectrum is a photon which 
is emitted with the lowest frequency possible (when it moves 
between any of the levels shown)?

7 Figure 7.5 shows some of the energy levels of the atoms a simple 
gaseous element. 

a Calculate the frequency emitted by a transition from the first 
excited state. 

b What wavelength radiation will be absorbed if an atom is raised 
from its ground state to the third excited state? 

c What is the ionization energy of this element in joules?

−122.4 eV

−30.6 eV

−13.6 eV

−4.9 eV
−7.65 eV

0 eV
ionization

second excited state

first excited state

ground state

Figure 7.5

Atomic structure
■ A simple model of atomic structure involves a relatively small nucleus 

containing positively charged protons and neutral neutrons. Protons and 
neutrons are known as nucleons (particles from the nucleus). Negatively 
charged electrons move around (orbit) the nucleus because of the electric force 
between opposite charges.

■ To an order of magnitude, a typical atom has a diameter of 10−10 m, while the 
nucleus at its centre is about 10−14 m in diameter.

■ Figure 7.6 shows a common and historical visualization of an atom (in this 
example, nitrogen) which is, it should be noted, completely out of scale. 
However, this 100-year-old model, which is similar to planets moving around 
the Sun, useful as it is, should not be taken too literally. As discussed later in 
the chapter, scientists’ ideas about atomic structure have been amended, but 
not in ways that are easy to represent in drawings. 
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■ The (rest) mass of the neutron, (mn = 1.675 × 10−27 kg) is very nearly the same 
as the (rest) mass of the proton (mp = 1.673 × 10−27 kg), but the electron’s 
(rest) mass is much smaller (me= 9.110 × 10−31 kg). The charge on the proton 
is equal in magnitude to the charge on the electron (±1.60 × 10−19 C).

Key concepts
The proton number, Z, is the 
number of protons in the nucleus 
of an atom. (Sometimes also called 
atomic number.) Atoms which have 
the same number of protons are 
atoms of the same element. 

The nucleon number, A, is the 
sum of the number of neutrons plus 
the number of protons. (Sometimes 
also called mass number.)

The number of neutrons in the 
nucleus of an atom, the neutron 
number, N, is calculated from 
A − Z.

Expert tip

The rest mass of any object or particle is its mass as measured by an observer 
who is at rest compared to the object (so that they have the same velocity). 
Einstein’s theory of relativity (Option A) predicts that the mass of any object 
increases with its velocity relative to an observer, although the effect is only 
significant at speeds close to the speed of light.

■ The simple nuclear model of an atom based on electrical forces was very useful 
at the time it was proposed, but it had problems: accelerating particles radiate 
high-frequency electromagnetic radiation, so that the electrons should rapidly 
lose energy and spiral into the nucleus. The model also does not explain the 
discrete energies of electrons or why protons in the nucleus are not repelled 
apart.

 Isotopes 
■ Isotopes have identical chemical properties, but slightly different physical 

properties because of the difference in mass.
■ Nuclide (and isotope) notation: AZX, where X is the symbol of the element.

QUESTIONS TO CHECK UNDERSTANDING
8 238

92U is the most common isotope of uranium. How many protons, neutrons 
and electrons are there in an atom of this nuclide?

9 Oxygen has the proton number 8. It has two stable isotopes, one has 
8 neutrons and the other 10. 

a Write down the two nuclide symbols for these isotopes. 

b Calculate, to 2 significant figures, the mass (kg) of a nucleus of the 
heavier isotope. 

c A sample of water, H2O, contains both isotopes (in a ratio of about 
400 : 1). Suggest why oxygen-18 molecules evaporate at a slower rate 
than oxygen-16 molecules.

10 Explain the difference between the terms ‘nuclide’ and ‘isotope’.

Key concepts
Two atoms which have the same 
number of protons, but different 
numbers of neutrons are known as 
Isotopes (of the same element).

The term nuclide is used to 
describe a particular type of atom, 
as characterized by the contents of 
its nucleus.

Fundamental forces and 
their properties 
■ Coulomb’s law (Section 5.1) can be used to determine the magnitude of the 

forces acting between protons in the nuclei of atoms. Typically, such forces are 
of the order of 100 N, which are enormous forces on such a small particles. 
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■ In order to explain how it is possible for positively charged protons to be 
packed close together in a nucleus without strongly repelling each other apart, 
we need to introduce the concept of a strong nuclear force attracting nucleons 
together. See Figure 7.7.

■ The strong nuclear force is considered to be one of the four fundamental forces 
(interactions) in the universe. More details of these forces are given in Section 7.3.

Nuclear stability
■ The stability of any nucleus depends on the balance between the strong 

nuclear force, which attracts nucleons together, and the electric force repelling 
protons apart. This balance depends on the ratio of the number of neutrons to 
the number of protons. The pattern of stability can be represented on a chart of 
the nuclides, as shown in Figure 7.8.

 The nuclei of nuclides with low proton numbers are stable if the number of 
neutrons is approximately equal to the number of protons, for example 12

6 C. As 
the proton number increases, greater numbers of neutrons are needed if the 
nucleus is to be stable. For example, 116

50Sn is a stable nuclide. Elements with a 
proton number of 83 or greater have no stable isotopes.

Coulomb forces push
the protons apart

+

+

a

There must also be strong
nuclear forces between the

nucleons pulling them together

b

Figure 7.7
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Radioactive decay 
■ An unstable nucleus emits nuclear radiation (alpha particles, beta particles or 

gamma rays) which carry energy away from the nucleus, thus making it more 
stable.

■ The rate of radioactive decay cannot be controlled because it is unaffected by 
chemical and physical properties, such as temperature.

 The emitted radiation is often described as ionizing radiation because it 
causes atoms in the surrounding materials to lose electrons and form ions. 
This can cause chemical changes.

■ The cells of the human body may undergo chemical and biological changes as 
a result of exposure to ionizing radiation. This is dangerous to health. 

Key concept
The strong nuclear force acts 
between nucleons causing them to 
be packed closely together in the 
nucleus.

Key concepts
Radioactivity is the name that we 
give to the emission of radiation by 
a nuclide.

Radioactive decay is the process 
by which radioactive nuclides 
change into different elements 
after emitting particles. Decay is 
spontaneous and random.
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 Background radiation
■ We are all exposed to low levels of naturally occurring ionizing radiation 

in our everyday lives. This is called background radiation and it mostly 
originates from traces of radioactive materials in the ground and air, and 
cosmic rays from outer space. 

 Radioactivity experiments 
■ Because radiation can be harmful to humans, there are a range of important 

safety precautions necessary when performing radioactivity experiments.
■ There are various types of radiation detector and knowledge of how they work is 

not needed for this course. (One common kind is called a Geiger–Müller tube.) 
Measurements are recorded as counts: numbers which indicate the amount 
of radiation detected in any given time; or as a count rates, for example the 
count per minute.

■ We cannot be sure that a counter detects all the radiation that is incident 
upon it. Its sensitivity may also vary for different radiations.

 It may be necessary to subtract a background count from measurements made in 
radioactivity experiments in order to know the count that is due from a source 
alone.

■ Because of random variations in the emission of radiation from a source 
and from the ‘background’, it is normal for there to be variations in count 
rates taken under identical circumstances. This can be a significant problem 
affecting the accuracy of experiments with low count rates.

Alpha particles, beta particles 
and gamma rays 
■ There are three principle types of nuclear radiation: alpha particles, beta 

particles and gamma rays.
■ Alpha particles are given the symbol 42He, or 42 . They are doubly positively 

charged (+2e) and travel fast (about 10% of the speed of light, c). Their energy 
can be calculated using the equation for kinetic energy (½mv2). All alpha 
particles emitted from the same nuclide have the same energy.

■ Beta-negative particles are singly negatively charged (−e) and given the symbol 
0

−1e, or  0−1 .
■ Beta-positive particles are given the symbol  0+1e, or  0+1 . A positron is identical to 

an electron, except that it is positively charged (+e). It is the antiparticle of an 
electron. There is more about antimatter in Section 7.3.

■ Beta particles can travel at speeds close to the speed of light. Their energy can 
be calculated using the equation for kinetic energy. Beta particles emitted from 
different atoms of the same nuclide have a range of different energies. 

 Gamma rays have no mass or charge. Their energy can be calculated using the 
equation for photon energy (E = hf ).

Key concept
The number of decays every 
second in a source is known 
as its activity. Activity is not 
easily measured, although we 
often assume that a count rate is 
proportional to a source’s activity.

QUESTIONS TO CHECK UNDERSTANDING
11 Explain what we mean when we say that radioactive decay is spontaneous.
12 Consider Figure 7.8. Predict the nucleon number of a stable isotope of 

ytterbium (proton number 70). 

13 Calculate the approximate ratio of the mass of an alpha particle to the mass 
of a beta particle.

14 Calculate the energy (in MeV) of:

a a beta particle travelling at a speed of 0.72c

b an alpha particle travelling at 0.05c

c a gamma ray of wavelength 1.0 × 10–12 m.

15 Describe two safety precautions necessary when working with radioactive 
materials.

16 Explain why the accuracy of radioactivity measurements is greater if the 
count rates are higher.

Key concepts
Alpha particles are a 
combination of two protons and 
two neutrons (helium nuclei).

Beta-negative particles are very 
high-speed electrons.

Beta-positive particles are very 
high-speed positrons.

Gamma rays are high-frequency 
electromagnetic radiation 
(photons).

Expert tip

The fact that beta particles from 
the same source have a range of 
different speeds means that another 
(uncharged) particle must be 
emitted during beta decay (consider 
conservation of momentum). The 
other particle is a neutrino or an 
antineutrino, both of which are very 
difficult to detect.
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 Completing decay equations for alpha and beta decay
■ After a transmutation, the resulting nuclide is often called a daughter product.
■ The following balanced decay equations represent three possible 

transmutations:
 AZX  Z–2X + 42He

 parent nuclide daughter nuclide alpha particle

 AZX  Z+1X + 0–1   +  νe
 parent nuclide daughter nuclide beta-negative antineutrino 
     particle

 AZX  Z–IX + 0+1   + νe
 parent nuclide daughter nuclide beta-positive neutrino
     particle 

■ There is more about neutrinos and antineutrinos (antiparticles of each other) 
in Section 7.3. They are fundamental particles of very small mass and no charge. 

 There are three different kinds of neutrinos/antineutrinos (see later). Those 
involved with beta decay are called electron neutrinos or antineutrinos.

 During gamma decay no new element is formed: there are no changes to the 
proton or nucleon number of the parent nuclide. Gamma rays are released 
from excited nuclei.

■ A nucleus may undergo a series of radioactive decays, producing different 
elements by the emission of alpha and beta particles. This means that 
radioactive sources may contain a range of different nuclides. The relative 
proportions will depend on their half-lives (see later).

 Absorption characteristics of decay particles 
■ Ionizing radiations will travel away from their source until they have 

transferred most or all of their energy in creating ions in the air or surrounding 
materials. We then say that they are absorbed and cannot penetrate any 
further. The penetrating power of radiation depends on its energy and how 
many ions it creates every centimetre.

■ Gamma rays cause the least ions per centimetre, which means they penetrate 
furthest and are not easily absorbed. They can travel very large distances in 
air without significant absorption, although the radiation will lose intensity 
as it spreads out (approximating to an inverse square law). Gamma ray 
intensity is typically reduced by half by passing through about two or three 
centimetres of lead. See Figure 7.9.
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■ Alpha particles create the most ions per centimetre and therefore only travel a 
few centimetres in air. See Figure 7.10, which shows the formation of ion pairs. 
Alpha particles cannot pass through thin paper.
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Key concept
When a particle is emitted during 
radioactive decay, a new element 
is formed. This process is called 
transmutation. Transmutations 
are represented in balanced 
nuclear equations.
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■ Beta −negative particles are less ionizing than alpha particles and they 
typically travel about 1 m in air before they are absorbed. They are typically 
absorbed by about 2 or 3 mm of aluminium.

■ The absorption of radiation can be used to identify the three different types of 
radiation. 

Expert tip

The three types of radiation are also affected differently as they pass through 
electric and magnetic fields. Gamma rays are unaffected. Beta particles are 
deflected more than alpha particles because of their much smaller masses. When 
alpha or beta particles move perpendicularly across magnetic fields, the ‘left-
hand rule’ can be used to predict the direction of the force that results in motion 
in the arc of a circle (see Section 5.4). Forces on alpha and beta particles in 
perpendicular electric fields produce parabolic paths. 

QUESTIONS TO CHECK UNDERSTANDING
17 14

6C is a radioactive nuclide which decays by beta-negative emission to 
nitrogen. Write an equation to represent this decay.

18 What is the decay equation for the decay of radium-222 by alpha emission 
to radon, Rn (proton number 86)?

19 The following transmutation occurs when a nuclide of protactinium decays: 
230

91Pa → 230
90Th. 

a What kind of decay is this? 

b Write out the full decay equation for this transmutation.

20 Where on the chart of the nuclides (Figure 7.8) would you expect to find: 

a alpha particle emitters 

b beta-negative particle emitters?

21 Explain how you would use absorption tests to confirm that a source of 
radiation was only emitting beta particles.

22 An alpha particle of energy 3 MeV produced about 2 × 105 ion pairs in 4 cm 
of air before it was absorbed. 

a Estimate the average ionization energy of the molecules in the air. 

b If human skin is about 1000 times denser than air, estimate how far the 
alpha particles could travel into skin. State any one assumption you made.
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Key concept
Although the decay of any single 
unstable nucleus is a random 
event, the overall behaviour of 
large numbers of unstable nuclei 
can be predicted accurately.

Half-life 
■ The randomness of radioactive decay can be represented by tossing coins (or 

dice): we cannot predict the result of a single toss of a coin, but if we toss 1000 
coins, we can be very sure that about 500 will be ‘heads’ and about 500 will 
be ‘tails’. The more coins that are tossed, the smaller the percentage variation 
between reality and prediction.

■ The count rate from any pure radioactive source will decrease with time. This 
decrease may be very quick, or take place over millions of years, or anything in 
between. But whatever the timescale, the rate of decrease will reduce over time 
as shown in Figure 7.11, which represents the count rate from any pure source. 
In theory, the count rate will never reduce to zero, although it will become 
vanishingly small. 

■ A radioactivity count rate reduces because, as time passes, there are fewer and 
fewer un-decayed nuclei remaining which are able to decay.

■ This behaviour is commonly demonstrated with a dice analogue experiment, 
in which 1

6
 (chosen by one side of the dice) of an initially large number of dice 

are removed each time that all the remaining dice are thrown.
 The half-life, T1/2, of a radioactive nuclide, is a way of quantifying the rate of a 

radioactive decay (or any other exponential decay). Half-life is also equal to the 
time it takes for the activity or the count rate to halve. 

■ If N is the initial number of radioactive nuclei of a pure sample, then after a 
time of one half-life, 1

2
N will have decayed and 1

2
N radioactive nuclei are left in 
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the sample. After two half-lives then there will be only 1
4
N radioactive nuclei 

left in the sample and 34N will have decayed, etc.

 Investigating half-life experimentally (or by simulation) 
■ If we wish to experimentally confirm the half-life of a nuclide it is necessary 

to use an isotope with a half-life of a suitable value – a few minutes would be 
ideal. The count rate should be measured over several half-lives, adjusted by 
deducting the background count, and a graph drawn of count rate against 
time. Figure 7.12 shows an example.

 Determining the half-life of a nuclide from a decay 
curve 
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Figure 7.12

■ The time for the count rate to reduce from any value to half of that value will 
equal the half-life of the nuclide. Accuracy can be improved by determining 
the average of several values taken from the same graph.

 The decay curve shown in Figure 7.12 has been drawn using experimental 
data (count rates) directly obtained from a radiation detector (adjusted for 
background count). A graph of how the number (or percentage) of un-decayed 
atoms, varied with time would produce the same half-life for the same nuclide, 
as would an activity–time graph, but in such cases, the data would not be so 
easily obtained experimentally.

Expert tip

This kind of curve seen in Figure 7.11 
represents an exponential decay, in 
which a quantity always reduces to 
the same fraction (half, for example) 
in equal time intervals.

Key concept
Half-life is the time taken for half 
of any sample of unstable nuclei to 
decay.

Expert tip

Most radioactive sources are not 
pure, but contain a mixture of 
different nuclides. This is because, 
over time, there will have been a 
series of transmutations into a decay 
series (chain) of different elements. 
As a result, such sources will not have 
a single, simple half-life. To obtain a 
pure source in a school laboratory it 
will be necessary to extract a suitable 
element from a mixture. This can be 
done by using a selective solvent in a 
sealed container.

Common mistake

The count rate measured by a 
radiation detector is often confused 
with the activity of the source 
emitting the radiation. They are not 
the same, but can usually be assumed 
to be proportional to each other.

QUESTIONS TO CHECK UNDERSTANDING
(Note that, in this chapter, calculations will only involve whole numbers of half-lives.)

23 a What is the half-life of the nuclide represented in Figure 7.12? 

b Predict the count rate after 475 s.

24 A pure radioisotope has a half-life of 2 minutes. 

a What fraction of the atoms remains undecayed after 6 minutes? 

b What percentage has decayed after 8 minutes?

25 A student measures the count rate from a pure radioactive source every thirty seconds and records the following results 
(s−1): 18.4, 12.3, 8.9, 6.2, 4.1, 3.4, 2.6. The background count at the time of the experiment was 0.4 s−1. Draw a graph of 
these results and use it to determine the half-life of the isotope.

26 60Co has a half-life of 5.3 years. If a source of this nuclide is no longer useful after its activity has fallen below 10% of its 
initial value, estimate the number of years before it has to be replaced.

27 99Tc is a very widely used isotope in hospitals, where it is injected into patients to ‘trace’ its movement in the body (by 
detecting radiation that radiates out of the body). This radionuclide emits gamma rays and has a half-life of 6 hours. 

a Why is it important that its half-life is a matter of hours? 

b Why is a nuclide which emits gamma rays used? 

c What percentage remains in the body after one day?

28 Describe an experiment to determine the half-life of a nuclide.
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NATURE OF SCIENCE

 Accidental discovery
The unintentional discovery of radioactivity by Henri Bequerel is a well-known 
story in science, but there have been many notable ‘accidental’ discoveries. This, 
in itself, is not surprising because events rarely go according to expectations. 
However, it is in the response to unexpected, or seemingly insignificant, 
discoveries that we should recognize the true talents of the great scientists.

7.2 Nuclear reactions
Essential idea: Energy can be released in nuclear decays and reactions as a result 
of the relationship between mass and energy.

The unified atomic mass unit 
■ The SI unit mass, the kilogram, is inconveniently large when working with 

the much, much smaller masses of atomic particles. A new unit of mass needs 
to be defined for use in atomic physics. It is based on the mass of one nucleon, 
but needs to be defined very precisely.

■ We have seen that protons and neutrons do not have identical masses and 
that their mass also varies with relative velocity. We will also see later in this 
section that the mass of nucleons varies slightly when they are combined in 
different ways.

 The unified atomic mass unit, u, is widely used for recording the masses of 
atomic particles. 

Equivalence of mass and energy
■ Following his work on relativity (Option A), Einstein was the first to state that 

mass and energy are the same property of a physical system. This is described 
as the equivalence of mass and energy. It is considered to be misleading to 
state that matter is converted into energy or vice versa.

■ The increase in mass, Δm, that accompanies an increase in energy, ΔE, can 
be calculated from ΔE = Δmc2, where c is the speed of light. Since c2 ≈ 1017, 
it should be clear that in everyday life, such increases in mass (= ΔE/c2) are 
immeasurably small. 

■ In atomic physics (because of the sizes of the forces within nuclei) relatively 
large amounts of energy are transferred from very small masses, so that, unlike 
the macroscopic world, changes of masses can become significant and may 
be measurable. This means that in atomic physics, mass has to be included 
in energy calculations, and we often refer to the conservation of mass–energy 
rather than the conservation of just energy (or mass).

 We now have an alternative unit for atomic masses: 1 u = (1.661 × 10−27) × 
(2.998 × 108)2 = 1.493 × 10−10 J. This can be converted to the usual energy units 
for atomic physics (MeV) by dividing by (1.602 × 10−19 × 106), to give  
1 u = 931.5 MeVc−2. A mass of 1 u (1.661 × 10−27 kg) is equivalent to an energy 
of 931.5 MeV. 

■ The rest mass of the proton was given in Section 7.1 as mp = 1.673 × 10−27 kg; this 
is equal to 1.007276 u or 938 MeVc−2. 

■ The rest mass of the neutron was given in Section 7.1 as mn = 1.675 × 10−27 kg; 
this is equal to 1.008665 u or 940 MeVc−2.

■ The rest mass of the electron was given in Section 7.1 as me = 9.110 × 10−31 kg; 
this is equal to 0.000549 u or 0.511 MeVc−2. 

Expert tip

In Chapter 12, for HL students, we learn how to use the mathematics of 
exponentials to perform calculations involving any time period, not just those 
involving whole numbers of half-lives.

Key concept
The unified atomic mass unit, 
u, is defined as one-twelfth of 
the mass of an isolated carbon-12 
atom. 1 u = 1.661 × 10−27 kg 

Key concepts
Mass and energy are two ways of 
measuring the same thing (mass-
energy). If the energy of a system is 
increased in any way (for example 
by heating it, or making it move 
faster, or moving it away from the 
Earth), then there must be an 
equivalent increase in mass.

Nuclear physics involves relatively 
large amounts of energy and small 
masses, so that the changes of 
mass which occur when energy is 
transferred become significant. They 
can be calculated from ΔE = Δmc2.

Common mistakes

The equation ∆E = ∆mc2 is perhaps 
more commonly seen in the form 
E = mc2. However, we are using this 
form because it stresses changes to 
E and m. Using the equation E = mc2 
may suggest only the total conversion 
of a mass to energy.
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QUESTIONS TO CHECK UNDERSTANDING
29 a What is the total mass (in u) of: i six separate protons, ii six separate 

neutrons, iii six separate electrons? 

b Add your answers together to give the total mass of the separate 
particles of a 12

6C atom. 

c Compare your answer to part b to the defined mass of the 12
6C atom. 

(The reason for the difference is given below.)

30 The mass of an atom of oxygen-16 is 15.999 u. Express this mass in:

a kg 

b MeV.

31 A 1500 kg car is accelerated from rest to 20 m s−1. Calculate its kinetic energy 
and the equivalent increase in mass.

Mass defect and nuclear binding energy
■ In order to separate all the nucleons in a nucleus it would be necessary to 

supply energy to overcome the strong nuclear forces holding them together. 
The same amount of energy would be released if a new nucleus was formed 
from the same (separated) nucleons. These are only ‘thought experiments’ 
because it is not practically possible. The energy that would be involved is 
called the binding energy of the nucleus.

nucleus
(small mass)

+

separated nucleons
(larger mass)

binding energy

+

+
+

+

+

+

  Figure 7.13

■ Alternatively, nuclear binding energy can be considered to be the energy 
that would be released if a nucleus was formed from separate nucleons. 
See Figure 7.13.

■ Because of the energy difference, the total mass of all the nucleons together 
in a nucleus is less than the sum of the masses of its nucleons when they are 
separated. This difference is called a mass defect.

 Solving problems involving mass defect and binding 
energy 

Key concepts
Nuclear binding energy is 
the amount of energy needed 
to completely separate all of the 
nucleons of a nucleus. 

Nuclear binding energy has a mass 
equivalent which is called the 
mass defect of the nucleus.

QUESTIONS TO CHECK UNDERSTANDING
32 a What is the mass defect of a 12

6C atom (see question 29)?

b What is the binding energy of a 12
6C nucleus (in MeV)?

33 Iron-56 has a mass defect of 0.528479 u.

a What is this mass expressed in kilograms?

b What is the binding energy of this nucleus (in MeV)?

34 An atom of 16
8O has a mass of 15.9994 u. What is its mass defect (in u)? 
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 Solving problems involving the energy released in 
radioactive decay

■ When an unstable nucleus emits energy (the kinetic energy of a particle or the 
electromagnetic energy of a photon), in order for the mass–energy of the system 
to remain constant, there must be a slight decrease in the total mass of all the 
particles involved.

Average binding energy per nucleon 
■ For example, the binding energy of the lithium-7 nucleus is 37.7 MeV, so that 

its binding energy per nucleon is 5.4 MeV.
■ We might expect that the binding energy of nuclei increased in proportion to 

the number of nucleons, so that the average binding energy per nucleon was 
approximately the same, but there are significant and interesting variations. 
See Figure 7.14.

■ A higher binding energy per nucleon means that the nucleus is more stable, 
because more energy per nucleon would be needed to separate its nucleons.

 Sketching and interpreting the general shape of 
the curve of average binding energy per nucleon 
against nucleon number 

■ Average binding energy per nucleon rises with nucleon number to a maximum 
(at nickel-62: 8.8 MeV) and then gradually decreases with increasing nucleon 
number. 
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QUESTIONS TO CHECK UNDERSTANDING
35 The nuclide 24

11Na decays by beta-negative emission to magnesium. 

a Write an equation for this decay. 

b If the rest mass of the sodium atom was 23.99096 u and the rest mass 
of the magnesium atom was 23.98504 u, determine the energy (MeV) 
of the emitted beta particle.

36 An atom of 226
88Ra has a mass of 226.02541 u and emits an alpha particle of 

kinetic energy 4.77 MeV. The resulting nuclide is an isotope of radon (Rn). 

a Write an equation for this decay. 

b Determine the mass (u) of the radon atom. (Mass of an alpha particle = 
4.00151 u.)

Key concept
The average binding energy 
per nucleon is the total binding 
energy divided by the number 
of nucleons in the nucleus. It is 
an important indication of the 
relative stability of a nucleus.

Expert tip

We have represented binding energy 
as positive, but if we consider 
that separated nucleons have zero 
potential energy, then binding 
energies should be quoted with 
negative values to represent the fact 
that if enough energy is added to the 
nucleus to separate the nucleons, the 
total energy will then be zero.
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Nuclear fission and nuclear fusion 
■ As can be seen in Figure 7.15a, nuclear fission is only possible for massive nuclei 

because if fission can be induced, the average binding energy per nucleon 
increases in the process. Fission will result in greater nuclear stability and the 
release of energy (in the form of kinetic energy of the newly formed nuclei and 
neutrons, and the electromagnetic energy of photons: see below).

■ As a result of the energy released during fission, the mass of the nuclei must 
have decreased, although the average binding energies per nucleon have 
increased (more energy is required to separate the nucleons than before). 

 In practice, nuclear fission is only possible with a few nuclides. The most 
well-known example is uranium-235, used in nuclear power stations.

 Uranium-235 can be induced to undergo nuclear fission when 
it is bombarded with slow-moving neutrons. For example, 

n+ U U Ba+ Kr+3 n+photons0
1

92
235

92
236

56
141

36
92

0
1→ →  

■ When nuclear fission occurs continuously, very large quantities of energy 
can be released and this can be used in nuclear reactors (see Section 8.1) and 
nuclear weapons.

 Nuclear fusion is only possible with light nuclei because only those nuclei can 
be combined to produce a nucleus which has a larger average binding energy 
per nucleon. See Figure 7.15b. Because energy is released, the mass of the 
system will be less than the initial masses of the smaller nuclei.

 The following is an example of nuclear fusion, in which the nuclei of two 
isotopes of hydrogen combine: 21H + 31H → 42He + 10n + 17.6 MeV of energy.

 Fusion reactions occur inside stars and are responsible for generating new 
elements from hydrogen and helium.

■ Nuclear fusion can occur in stars because the temperature and the particle 
density are extremely high. Although nuclear fusion has been achieved in 
experimental reactors for very short periods of time on Earth, sustained release 
of energy has not yet been possible.

QUESTIONS TO CHECK UNDERSTANDING
37 What is the average binding energy per nucleon of a 16

8O nucleus (use data 
from question 34)?

38 Use Figure 7.14 to:

a determine the binding energy of a 184
74W nucleus 

b estimate the average binding energy per nucleon of 132
56Ba.

Bi
nd

in
g 

en
er

gy
 p

er
 n

uc
le

on

Nucleon number

fission of a large nucleus increases
the average binding energy per
nucleon and releases energy

a

Bi
nd

in
g 

en
er

gy
 p

er
 n

uc
le

on

Nucleon number

fusion of small nuclei increases
the average binding energy per
nucleon and releases energy

b

Figure 7.15

QUESTIONS TO CHECK UNDERSTANDING
39 Figure 7.16 represents an alternative fission of 235

92U. 

a Write a balanced nuclear equation for this reaction. (The proton number 
of rubidium is 37.) 

b Determine the energy released in this reaction. (Mass of 90Rb = 89.915, 
mass of 143Cs = 142.927, mass of 235

92U = 235.044.)

40 2
1H (deuterium) can fuse with 3

1H (tritium) to form helium-4 and a neutron. 
Confirm that about 18 MeV of energy is released in this process.  
(Mass of 2

1H = 2.0136 u, mass of 3
1H = 3.0160 u, mass of 4

2He = 4.0020 u.)

Figure 7.16
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Key concepts
Nuclear fission is the process in 
which a massive nucleus splits into 
two smaller, more stable nuclei.

Nuclear fusion occurs when two 
small nuclei join together to make 
a larger, more stable nucleus.

Both processes increase average 
binding energy per nucleon and 
release significant amounts of energy, 
so that the total mass is reduced.

 Solving problems involving the energy released in 
nuclear fission and nuclear fusion 
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NATURE OF SCIENCE

 Patterns, trends and discrepancies
There are about 340 naturally occurring nuclides on Earth, of which about 85 are 
unstable. An enormous amount of physical data is available on these nuclides, 
the analysis of which requires the identification of patterns and trends in their 
behaviour. Figures 7.8 and 7.14 show two common ways of representing some of 
this data. Once patterns have been identified, scientists can use that information 
to make predictions about other nuclides and isotopes.

7.3 The structure of matter
Essential idea: It is believed that all the matter around us is made up of fundamental 
particles called quarks and leptons. It is known that matter has a hierarchical 
structure with quarks making up nucleons, nucleons making up nuclei, nuclei and 
electrons making up atoms, and atoms making up molecules. In this hierarchical 
structure, the smallest scale is seen for quarks and leptons (10–18 m).

Describing the Rutherford-Geiger-
Marsden experiment that led to 
the discovery of the nucleus 
■ The model of an atom with a central nucleus was first proposed by Ernest 

Rutherford following an investigation of alpha particle scattering by thin gold 
foil (the Rutherford-Geiger-Marsden experiment, see Figure 7.17). 

■ Only a few alpha particles were scattered through large angles, which 
suggested that the nucleus is very much smaller than the whole atom. See 
Figure 7.18.
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  Figure 7.18

■ By using alpha particles of different energies and/or targets of different metals, 
Rutherford was able to confirm that the scattering closely followed Coulomb’s 
inverse square law (of electric repulsion). 

 In the hundred years following Rutherford’s (Figure 7.20) work a large number 
of sub-atomic particles have been discovered (most are unstable and have only 
been created in very high-energy physics laboratories). The structure of matter 
has been the subject of an enormous amount of research in many countries. 
The latest model of the particles in the universe is called the Standard Model.

The Standard Model
■ In the Standard Model there are only four types of elementary particle: 

leptons, quarks and exchange particles (also called gauge bosons and the 
Higgs boson). 

■ Figure 7.19 summarizes the classification of both types of particle. More details 
are provided in the rest of this section.
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  Figure 7.17

Key concept
The scattering pattern of positively 
charged alpha particles by thin gold 
foil provides evidence that they are 
repelled by small positive nuclei at 
the centres of atoms.

Expert tip

In Chapter 12 (HL) we see how 
equating the kinetic energy of 
the alpha particles to the electric 
potential energy between them and 
the nucleus can lead to an estimate 
of nuclear radius.
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Key concepts
An elementary (fundamental) 
particle (for example, the 
electron) is one which is not 
known to have any internal 
structure, so that it does not 
consist of simpler particles.

Composite particles contain 
combinations of other particles 
(for example, protons).
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■ Figure 7.21 is a chart of the Standard Model of all the elementary particles. 
Neither Figure 7.19 nor Figure 7.21 includes antiparticles.
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Figure 7.20 Ernest Rutherford



7 Atomic, nuclear and particle physics124

Matter and antimatter 
■ We saw in Section 7.1 that the positron is the antiparticle of the electron.
■ An antiparticle (antimatter) can only exist for a short time because when 

it meets a particle they will both annihilate and release a large amount of 
energy in the form of gamma rays.

■ Antiparticles are usually represented by using a bar above the symbol, for 
example p represents an antiproton (e+ is widely used for the positron).

■ A few uncharged particles (for example, the photon) are their own 
antiparticles.

Key concept
For every particle there is an 
antiparticle which has the same 
mass as the particle, but with the 
opposite charge (if charged) and 
opposite quantum numbers.

Quarks, leptons and their antiparticles 
■ Quarks and antiquarks are the only particles which have fractional charge 

(either + 2
3
 e or – 1

3
e), but they cannot exist as separate particles (charges). 

Quarks are always joined in combinations, such that, if they have an overall 
charge, it is ±e, not a fraction of e. 

■ There are six kinds (flavours) of quark: up, down, strange, charm, 
bottom, top. The up and down quarks are very common in the universe; the 
others can only be created on Earth in high-energy physics laboratories, or 
when cosmic rays strike the atmosphere. 

■ The basic properties of quarks are shown in Table 7.1. Antiquarks are not included. 
This table is similar to the one provided in the IB Physics data booklet. (Baryon 
number and strangeness are explained later.) There is some uncertainty about the 
masses of individual quarks because they cannot be isolated.

Table 7.1

Flavour Symbol Electric charge Baryon number Strangeness

up u +2
3

e 1
3

0

down d −1
3

e 1
3

0

strange s −1
3

e 1
3

−1

charmed c +2
3

e 1
3

0

bottom b −1
3

e 1
3

0

top t +2
3

e 1
3

0

■ The existence of quarks was first proposed (1964) in an attempt to reduce and 
simplify the number of ‘elementary’ particles that had been detected. Quarks 
were also used to explain the difference between protons and neutrons, and 
incorporate the strong and weak nuclear forces. A few years later experiments 
(deep inelastic scattering) showed that the proton did indeed have an inner 
structure.

■ There are six kinds (flavours) of leptons, of which three are charged ( e): 
electrons, muons and taus, and three are uncharged: their neutrinos. 
Because of their very low mass and lack of charge, neutrinos and antineutrinos 
are very difficult to detect. 

Expert tip

Antimatter exists briefly on Earth and elsewhere as a consequence of beta particle 
decay (or pair production: see Section 12.1 for HL), or in high-energy physics 
laboratories. Scientists are still uncertain of the reason why the universe contains 
so much more matter than antimatter. This is one of the important unanswered 
questions in astrophysics concerning the early development of the universe. 

Key concept
Quarks are the elementary 
particles from which protons, 
neutrons and mesons are composed.

Key concept
Leptons (and antileptons) are mostly 
particles of low mass which are 
unaffected by the strong nuclear force.
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■ Electrons are stable and by far the most common charged lepton in the 
universe. Muons and taus are unstable and on Earth can only be produced in 
high-energy physics laboratories. 

■ The basic properties of leptons are shown in Table 7.2. (Antileptons are not 
included.) This table is similar to the one provided in the IB Physics data 
booklet. (Lepton number is explained on page 126.)

Table 7.2

Lepton Symbol
Electric 
charge/e Rest mass (MeV c−2)

Lepton 
number

electron e −1 0.511 1

electron neutrino νe 0 very small, not known 1

muon μ −1 106 1

muon neutrino νμ 0 very small, not known 1

tau τ −1 1780 1

tau neutrino ντ 0 very small, not known 1

QUESTIONS TO CHECK UNDERSTANDING
41 a Write a brief account of the experiment shown in Figure 7.17. 

b Explain how the results of this experiment led to the nuclear model of the atom.

42 a Sketch the path of an alpha particle deflected by about 90° when it passes near a 197
79 Au nucleus. 

b Add a second line to show the approximate path of an alpha particle which approached on the same path but with 
twice the energy of the first. 

c Explain how the angles of deflection would change if the alpha particles were fired at silver atoms (proton  
number 47).

43 Use Coulomb’s law to calculate the forces acting between an alpha particle and a 206
82Pb nucleus when they are  

3.0 × 10−10 m apart.

44 Explain why a neutron is not considered to be an elementary (fundamental) particle.

45 Write down the symbol and charge of a charm antiquark.

46 Lepton and quarks are collectively called fermions. Including antiparticles, how many types of elementary fermions are 
there in the universe?

Hadrons, baryons and mesons 
■ Hadrons can be classified into two kinds: baryons (3 quarks) and mesons  

(2 quarks: a quark and an antiquark). Other combinations (for example 4 
quarks) may be possible. 

■ Examples are shown in Figure 7.22. Protons and neutrons are the most 
common kinds of baryon, but there are others, like the various kinds of 
lambda particles. 

Key concepts
Composite particles containing 
quarks are called hadrons.

Baryons all contain three quarks.

Mesons all contain one quark and 
one antiquark.

baryons mesons

proton neutron

lambdaantiproton 

π+ π0

K0

u u u

u s
d

d

u u
d d

d
d u

u
s

u
d

Figure 7.22
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 Describing protons and neutrons in terms of quarks 
■ All nucleons and their antiparticles contain three quarks. An antiproton, for 

example, contains two up antiquarks and one down antiquark (uud)

 Describing mesons in terms of quarks
■ There are many types of meson (such as pions and kaons) and antimesons. They 

are all unstable particles. There is no requirement in the IB Physics course to 
remember the names or compositions of mesons.

■ The concept of strangeness was first introduced when some mesons were 
found to have ‘strange’ properties. This unusual behaviour was then explained 
by proposing that the meson contained a different kind of quark: a strange 
quark, given a strangeness of −1.

Confinement 
■ Quarks can only exist in combination with other quarks or antiquarks.

 Describing why free quarks are not observed 
■ Quark confinement occurs because the very large force between quarks does not 

decrease with greater distance between them. If an increasingly large amount of 
energy was supplied in an attempt to separate bound quarks, it would only result 
in the formation of a new quark–antiquark pair (which then combine to form a 
meson) before the original quarks could be separated as free particles. In other 
words, adding energy creates more quarks, rather than separates quarks.

Key concepts
Protons are composite particles 
which contain two up quarks and 
one down quark (uud). 

Neutrons contain one up and two 
down quarks (udd).

QUESTIONS TO CHECK UNDERSTANDING
47 Write down the composition of two possible mesons and their antiparticles. 

Include at least one meson which contains a strange quark.

48 What are the composition, symbol and properties of an anti-neutron?

49 The Σ+ particle contains two up quarks and one strange quark. 

a What category of particle is this? 

b What is its charge? 

b It has a rest mass of 1189 MeVc−2. What is this mass expressed in atomic 
mass units (u)?

The conservation laws of charge, baryon 
number, lepton number and strangeness 
■ In any sub-atomic particle decay, or interaction between sub-atomic particles, 

certain properties must always be conserved. These properties are quantized 
and represented by quantum numbers.

■ The charge number of any particle will be 0 or a multiple of ±1
3 . For 

example, the charge on a proton is +1 ( 2
3  + 2

3  − 1
3 ), the charge of an up 

antiquark is − 2
3 , and the charge of the K0 meson shown in Figure 7.22 is zero 

(−1
3  + 1

3 )
 The baryon number of a particle is 1

3  of (the number of quarks less the 
number of antiquarks). A single quark has a baryon number of 1

3 . A proton or 
neutron has a baryon number of 1. All mesons have baryon numbers of zero.

 The lepton number of a particle is the number of leptons less the number of 
antileptons. All leptons have a lepton number of +1 and all antileptons have a 
lepton number of −1.

■ A strangeness number (−1) is only given to those hadrons which contain 
a strange quark. A hadron containing an antistrange quark is given the 
strangeness number +1.

Key concept
Charge number, baryon number and 
lepton number are always conserved 
in any interaction. The strangeness 
number is conserved in strong and 
electromagnetic interactions.

Key concept
Quark confinement refers to the 
fact that quarks do not exist as 
free individual particles, but only 
bound together (as hadrons).
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 Applying conservation laws in particle reactions 
■ The quantum conservation rules help us predict what can, and what cannot, 

happen in particle reactions. (There are also other important quantum 
numbers which are not included in the IB Physics course.)

■ Beta particle decay (Section 7.1) provides a suitable example: We might 
suppose that a neutron within an unstable nucleus decays to an electron and 
a proton (n → p+ + e−), but lepton number is not conserved, so this is not 
possible. The addition of an anti-lepton (an electron antineutrino) to the right-
hand side of the equation then represents the correct reaction. 

QUESTIONS TO CHECK UNDERSTANDING
50 Write down equations which represent the changes within a nucleus which 

is undergoing:

a beta-negative decay 

b beta-positive decay.

51 A positive pi meson (pion) consists of an up quark and a down antiquark. 
It is proposed that it could decay into an antimuon (positive muon) and a 
muon neutrino. 

a Write an equation for this possible decay. 

b Use the conservation laws to determine if it is possible.

52 Might it be possible for a tau particle to decay into two hadrons and a tau 
antineutrino? Explain your answer.

The nature and range of the strong 
nuclear force, weak nuclear force 
and electromagnetic force 
■ The nature of the four fundamental forces (interactions) was outlined in 

Section 7.1. This is summarized in Table 7.3. Forces acting ‘at a distance’ across 
empty space require some kind of explanation. This is achieved using the 
concept of exchange particles.

 Comparing the interaction strengths of the 
fundamental forces, including gravity 

Table 7.3

Fundamental 
interaction Acts on

Approximate 
relative size Range/m Exchange particle

strong nuclear quarks and gluons 1 10−15 gluon (g)

electromagnetic all charged particles 10−2 infinite, but reduces with an inverse 
square law

photon (γ)

weak nuclear quarks and leptons 10−6 10−18 W or Z bosons

gravitational all masses 10−38 (not significant for 
individual particles)

infinite, but reduces with an inverse 
square law

graviton  
(to be confirmed)

■ Some of the information shown in Table 7.3 is contained in the data booklet 
(but not the relative sizes or ranges of the forces).

Exchange particles 
■ Exchange particles are described as virtual particles, because they exist 

for only unmeasurably short periods of time and so cannot be detected. 
The photon is the exchange particle for the electromagnetic interaction, 
the gluon for the nuclear strong force, and W and Z bosons for the weak 
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nuclear force. The graviton has been proposed as the exchange particle for 
gravitational forces (but not confirmed). 

■ All gauge bosons are fundamental (elementary) particles of the universe.

 Describing the mediation of the fundamental forces 
through exchange particles 

■ When we observe a change of momentum we assume that an unbalanced 
force has acted (Section 2.2), even if we cannot see what caused the force. 
(Imagine, for example, watching a windmill starting to turn.) Fundamental 
forces acting across space are explained by the exchange of particles between 
the objects experiencing the forces. Each time a particle is emitted or received 
by an object, a force is exerted on that object. 

■ The name ‘virtual’ and the fact that they cannot be detected should not 
suggest that the exchange particles are not real (imaginary).

■ Figure 7.23 shows a widely used broad analogy: each time the ball is thrown 
or received the person experiences a force and moves backwards. This model 
represents a repulsive force, but modelling attractive forces is less easy (some 
sources use a boomerang analogy).

■ A full explanation of exchange particles is not required in this course, and 
needs an appreciation of the Heisenberg uncertainty principle (Chapter 12, for 
HL students). 

 The larger an exchange particle, the shorter the range of the force that it 
mediates (carries between particles). Since photons (and gravitons) have zero 
rest mass, their range is infinite. At the other extreme, W and Z bosons have 
significant masses, which is the reason that they can only act over very short 
distances. Gluons have low mass.

Feynman diagrams 
■ The exchange of virtual particles is best represented on Feynman diagrams. 

These diagrams attempt to give a visual representation of (unobservable) 
particle interactions. However, it is important to realize that Feynman 
diagrams represent interactions, not particle trajectories. That is, the precise 
direction of the lines is not important.

 Sketching and interpreting simple Feynman diagrams 
■ Essential features:

 Each interaction is represented by a point (vertex).
 The time before the interaction is to the left of the vertex, the time after is 

to the right of the vertex (but some sources use down/up).
 Observable particles are shown with straight lines to the right, with arrows. 

For antiparticles the arrow is reversed. There is always one arrow pointing 
to a vertex and one arrow pointing away.

 The direction of the line representing a particle changes after the 
interaction (to show that it has been affected).

 Exchange particles are represented by wavy lines, without an arrow.
 Each vertex joins two straight lines and a wavy line.
 The conservation laws can be applied at every vertex.

■ Students are not expected to remember particular Feynman diagrams. Some 
examples are shown in Figures 7.24–7.26.

 Figure 7.24 shows two vertices representing the mutual repulsion of two 
positrons, involving the exchange of a virtual photon.

 Figure 7.25 represents beta-negative decay and the importance played in 
that process by the W− boson.

A B

Figure 7.23

Expert tip

The Heisenberg uncertainty principle 
(Chapter 12 for HL students) allows 
virtual particles to transfer forces 
involving large variations of energy, 
provided that the particles exist for 
only very short times.

Key concept
Feynman diagrams are used 
to represent forces through the 
exchange of virtual particles. Two 
particle lines and an exchange 
particle meet at each vertex.

Key concept
At the fundamental level of 
particle physics forces are explained 
in terms of the continuous transfer 
of exchange particles (also called 
gauge bosons) between the two 
particles experiencing the force.

e+ e+

e+ e+

Figure 7.24
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 Figure 7.26 shows a gluon involved in the formation of a quark–antiquark 
pair. 

The Higgs boson 
■ The Higgs field is believed to occupy everywhere in the universe with a 

constant strength.
■ When elementary particles interact with the Higgs field they acquire mass. 

The Higgs boson is the key boson in this interaction. It is a fundamental 
particle with a large mass. 

■ The discovery of the Higgs boson in 2012 at CERN was much anticipated and 
finally confirmed the process by which elementary particles acquire their mass.

d+

d–

u

u

gluon

Figure 7.26

d quark
u quark

e– (beta particle)

W– boson
νe

antineutrino 

Figure 7.25

Beta-negative decay
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u u d
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u

u d
�

νe

νe

Key concept
All particles gain the property that 
we call ‘mass’ by interacting with the 
Higgs field which is thought to be 
constant throughout the universe. 
The Higgs boson is the particle 
responsible for this interaction.

QUESTIONS TO CHECK UNDERSTANDING
53 Use Coulomb’s law and Newton’s law of 

gravitation to compare the sizes of the 
electro (magnetic) force and gravitational 
forces acting between a proton and an 
electron separated by 0.1 nm. 

54 List the fundamental forces which can act on 

a electrons

b quarks

c photons.

55 Describe the interaction represented in 
Figure 7.27.

56 Draw a Feynman diagram to represent an electron and a positron 
annihilating to produce a neutrino pair.

e+

e–

μ+

μ–

Figure 7.27

NATURE OF SCIENCE

 Predictions
Many discoveries have been made in particle physics because physicists have 
designed experiments to look for something that they had already predicted (the 
discovery of the Higgs boson being a recent example). In particle physics the belief 
in ‘simplicity’ and the symmetry of ideas is a particularly powerful driving force 
that promotes investigation of any gaps or inconsistencies in current patterns of 
knowledge. 

 Collaboration
The benefits of mutual collaboration between scientists is probably self-evident 
and modern research is very much characterized by teamwork. The very 
considerable expenses of research into nuclear physics make international 
collaboration vital in order to avoid unnecessary duplication of efforts and 
resources.



Energy production

8.1 Energy sources
Essential idea: The constant need for new energy sources implies decisions that 
may have a serious effect on the environment. The finite quantity of fossil fuels 
and their implication in global warming has led to the development of alternative 
sources of energy. This continues to be an area of rapidly changing technological 
innovation.

Primary energy sources 
■ Solar radiation, uranium and crude oil are examples of primary energy sources.
■ Energy sources that use chemical or nuclear reactions to provide thermal 

energy or mechanical power are commonly called fuels.

Electricity as a secondary and 
versatile form of energy 
■ Electricity is an example of a secondary energy source. 
■ The usefulness and versatility of electricity cannot be underestimated. Not only 

can electricity be converted to or from most other forms of energy relatively 
easily, it can be transferred around the country by cables with minimal energy 
dissipation.

Renewable and non-
renewable energy sources 
■ A renewable source will continue to be available for our use for a very  

long time. For example, solar radiation is renewable, but fossil fuels are  
non-renewable energy sources.

■ Fossil fuels (oil, coal, natural gas) are formed underground by the action of 
high pressures and temperatures (in the absence of air) over many millions 
of years. It is probable that the world’s fossil fuel reserves will be significantly 
depleted (reduced) within the next one hundred years.

■ Figure 8.1 shows the approximate percentages of various energy sources used 
currently in the world. The share provided by renewable energy is slowly rising. 

oil

32%

natural gas

21%

coal 29%

nuclear

5%

renewable sources

13%

Figure 8.1

Key concept
A primary energy source is a 
source which occurs naturally and 
has not been converted in any way.

Key concept
A secondary energy source is 
one that has been converted from 
a primary source.

Key concept
A renewable energy source is 
one which is being continuously 
replaced (over a relatively short 
timescale) by natural processes.

8 
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Choice of energy sources
■ We know from Section 2.3 that the power = energy

time  (units: W, kW, MW, GW).
■ Power stations need to be able to deliver the amount of energy that is needed 

by the population. This cannot be done without affecting the environment.
■ Apart from wanting an energy source to be renewable, so that we do not ‘run 

out of it’ (use it all), we may also need to consider the following factors when 
choosing an energy source: 

 greenhouse gas emissions (global warming) 
 health hazards and pollution
 ease of transportation of the fuel
 energy density or specifi c energy (explained below)
 effi ciency of energy transfers, usually to electricity (from Section 2.3: 

efficiency = useful power out
total power in )

 whether the energy is continuously available 24 hours a day, 7 days a week, 
52 weeks a year

 (cost).
■ In this section we will consider five different energy sources: fossil fuels, 

nuclear fuels, wind, pumped storage (hydroelectric) and solar power.

 Specific energy and energy density of fuel sources 
■ These two concepts are ways of comparing how much energy can be 

transferred from given amounts of fuels:
■ The fact that fossil fuels have high specific energies (typically of the order of 

107 J kg−1) is a major reason for their widespread use. But the specific energies of 
nuclear fuels are typically 106 times greater.

 Solving specific energy and energy density problems 

QUESTIONS TO CHECK UNDERSTANDING
1 a How much energy is available from 800 kg of coal if its specific energy is 

28 MJ kg−1? 

b How much coal would need to be burned to transfer 1.0 MJ?

2 What is the specific of the chemicals (of mass 10 g) in a torch battery if it 
can supply a 3.0 W lamp for 2 hours?

3 An oil-fired power station burns 5200 kg of oil every hour. If the specific 
energy density of the oil is 44 MJ kg−1 and the efficiency of the power 
station is 35%, what is its output power? 

4 The energy density of petrol (gasoline) is 3.4 × 104 MJ m−3. 

a How much energy is available from 1 cm3? 

b If the density of petrol 720 kg m−3, what is its specific energy?

Sankey diagrams 
■ Energy flow (Sankey) diagrams can be used to represent the transfer of 

energy in different processes, or in a series of inter-connected processes.
■ Useful energy is shown flowing from left to right. The width of each section is 

proportional to the energy (or power) involved. Degraded energy is shown with 
vertical arrows. 

■ Every macroscopic process produces degraded energy.

Expert tip

There are other important renewable 
energy sources which are not 
discussed in this course. These 
include biomass, geothermal energy 
and wave power. Biomass is organic 
material which was recently living, for 
example wood and oil palm.

Key concepts
Specific energy = energy transferred 
from unit mass (unit: J kg−1). 

Energy density = energy transferred 
from unit volume (unit: J m−3). 

Common mistake

Energy density (energy per unit 
volume) and specific energy (energy 
per unit mass) are often confused 
and, for solids and liquids, the two 
concepts convey similar meanings 
and each have constant values. The 
specific energy of a gas is constant 
but its energy density varies with the 
state of the gas. 

Key concept
Degraded energy is energy 
dissipated into the surroundings as 
thermal energy which is no longer 
available to do useful work.
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 Sketching and interpreting Sankey diagrams 
■ Figure 8.2 shows a Sankey diagram for the simple one-step process of heating 

water electrically in a kettle. This process is 90% effi cient. If required, the 
degraded thermal energy could be divided to show the internal energy in the 
kettle itself.

QUESTIONS TO CHECK UNDERSTANDING
electrical energy

outputtotal
chemical
energy
input

thermal energy
transferred
to exhaust

gases

thermal energy
transferred
to cooling

water

thermal energy
due to friction

Figure 8.3

5 Figure 8.3 represents one version of the energy fl ow in a fossil-fuelled 
power station. Estimate the input necessary for the power station to have 
an output power of 10 MW. 

6 Draw a Sankey diagram to represent the use of a smart phone to play a 
video game.

Describing the basic features of 
fossil fuel power stations
■ Figure 8.4 shows a simplifi ed diagram of a fossil-fuelled power station. 

Note that the steam from the turbine is cooled, condensed and used again.

fuel burning

water

boiler

steam

exhaust gases

pump

water
condenser

cooling water waste thermal energy

turbine
coils

electricity

generator

Figure 8.4

electrical energy
300 000 J

internal energy 
in water, 270 000 J

thermal energy 
in surroundings, 
30 000 J

Figure 8.2

Key concept
Thermal energy is used to raise 
the temperature of water in a 
boiler and turn it into high-
pressure, high-temperature, 
steam. The steam causes the 
rotation of turbines which are 
connected to coils of wire in 
electricity generators. The process 
of electromagnetic induction 
produces electrical energy as the 
coils rotate in strong magnetic 
fields. 

Expert tip

Electromagnetic induction is the 
essential process in the generation 
of electricity: when a wire is moved 
across a magnetic field a useful 
current can be generated. The 
effect can be increased by winding 
the wire into coils with many turns 
and making them rotate very fast 
in strong magnetic fields. This is 
explained in more detail in Chapter 
11 (for HL students). 
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■ A turbine is a device which turns the translational kinetic energy of a fluid 
into rotational kinetic energy.

■ An electrical generator is a device which turns mechanical energy (usually 
of rotation) into electricity.

■ Fossil-fuelled power stations have become essential providers of electrical 
energy in most countries around the world. This is because they rate highly 
in most of the factors listed above (concerning choice of energy source). 
But, of course, the world has come to recognize that the burning of fossil 
fuels contributes to global warming (see Section 8.2) and has other harmful 
environmental effects, such as acid rain.

■ The various problems of developing nuclear power and/or renewable sources 
of energy on the scale necessary to provide for the population of the Earth are 
considerable. Added to which, the convenience and economy of using the existing 
infrastructure for fossil fuels, means that reducing the world’s dependence on them 
will take a great many years (despite considerable support for such changes).

 Solving problems relevant to energy transformations 
in the context of fossil fuel power stations 

■ Calculations may involve power inputs and outputs, related to the efficiency of 
the power station. The specific energy, or energy density, of a fossil fuel may be 
needed to relate the amount of fuel used to supply a certain amount of energy 
(in a given time).

QUESTIONS TO CHECK UNDERSTANDING
7 List at least four reasons why most of the world’s electricity is generated 

from fossil fuels.

8 At what rate must oil be burned in an oil-fired power station to produce an 
output power of 3.0 GW? (Specific energy = 46 MJ kg−1, efficiency = 39%.)

9 A town of 25 000 people is supplied electricity from one gas-fired power 
station which has an efficiency of 44%. If the maximum load on the power 
station occurs when the average power consumption is 1.9 kW per person, 
what is the greatest rate of gas consumption in the power station (specific 
energy = 55 MJ kg−1)?

10 Make a list of the useful energy transfers which occur in a fossil-fuelled 
power station.

11 The steam in the boiler in Figure 8.4 is under very high pressure, this raises the 
boiling point of the water to much higher than 100 °C. Suggest why this is done.

Nuclear power stations 
■ We have seen in Section 7.2 that energy can be released by 

nuclear fission. The most widely used example is the fission of 
uranium-235 that can be induced when a neutron is captured by 
its nucleus. See Figure 8.5.

■ n + U U Ba + Kr +3 n0
1

92
235

92
236

56
141

36
92

0
1→ → + gamma ray photons.

■ The isotope uranium-235 is the only fissile nuclide which is 
found occurring naturally on Earth in significant quantities. 
However, this isotope is only about 0.7% of uranium ore (most is 
uranium-238).

■ The products of nuclear fission (called fission fragments) have 
considerable kinetic energy, and if a large number of fissions can be sustained, 
the nuclear fuel will gain a considerable amount of internal energy and get 
very hot.

■ Figure 8.6 shows one common type of reactor: a pressurized water reactor 
(PWR). Thermal energy is transferred from the fuel to the water which, 
because it is under high pressure, can get very hot without boiling. Thermal 
energy (heat) is then exchanged with water in another system using a heat 
exchanger. Steam is created, which drives turbines, as in a conventional 
power station.

1n
0

1n
0

1n
0

1n
0

235U92

141Ba56
236U92

92Kr36

Figure 8.5
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 Describing the basic features of nuclear power stations 
■ The pressurized water system in the reactor is exposed to fission products and 

becomes radioactive. It also acts as the moderator of the fission (see below). For 
safety reasons it is a sealed system within the reactor.

■ Each fission reaction, like the one represented by the equation above, produces 
more neutrons and, under the right conditions, these neutrons can cause 
further fissions, so that there is the possibility of a self-sustaining chain 
reaction if, on average, one of the neutrons produced in fission goes on to 
cause further fission.

 Sustaining a chain reaction 
■ The percentage of fissile uranium-235 in a fuel used in a nuclear power station 

must be increased (above the natural 0.7%) to 3% or more. This process is 
called uranium enrichment. Uranium-238 is a good neutron absorber, so 
reducing the percentage of it also increases the probability of repeated fissions.

■ Neutrons are penetrating particles and many of those produced by fission will 
pass out from inside the fuel. The ones which remain in and around the fuel 
must be slowed down to improve their chances of causing further fissions. 
(Typically from energies of about 1 MeV to about 0.02 eV. This energy is 
comparable to the energies of molecules in the environment at the prevailing 
temperature, so that neutrons of this energy are often called thermal neutrons.)

■ The smaller the mass of the nuclear fuel, the greater the probability of 
neutrons escaping without causing fission. The minimum mass of nuclear fuel 
needed to sustain a chain reaction is called its critical mass. 

■ Neutrons are slowed down by collisions with nuclei of light atoms which do 
not absorb neutrons. This process is known as moderation. Graphite and the 
cooling water (as in Figure 8.6) are widely used as moderators.

■ The rate of nuclear fission is controlled by control rods which are composed of 
nuclides which are good at absorbing neutrons (boron is commonly used). The 
rods are moved into or out of the fuel as necessary. See Figure 8.7.

Key concept
The probability of a self-sustaining 
chain reaction occurring depends 
on the percentage of uranium-235 
in the fuel, the dimensions of the 
fuel and the speed of the neutrons. 
Slow neutrons are more likely to 
cause fission of uranium-235.

Expert tip

Since atoms of isotopes have identical 
chemical properties, the enrichment 
of uranium has to be a physical 
process which is affected by the 
very slightly different relative atomic 
masses of the isotopes (235 : 238). 
Gas centrifuges are most widely used.

Key concept
The moderator in a nuclear 
power station is a material used to 
decrease the speed of neutrons. 

The rate of reaction is controlled 
using a neutron absorbing material 
in control rods.
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Figure 8.7

 Discussing safety issues and risks associated with the 
production of nuclear power 

■ Because of its very long half-life (770 million years), radiation from 
uranium-235 in itself is not considered to be a major concern. However, the 
radioactive gas radon (which has a short half-life) is one of the products in its 
decay chain, and because it can be inhaled it is strongly linked to lung cancer. 
This is a major safety concern in the mining and processing of uranium.

■ Gamma rays, neutrons and the radiation from fission products are all 
dangerous and the reactor vessel and its building must prevent the release of 
these into the environment. People who have to work close to nuclear reactors 
must be protected and have their radiation exposure monitored regularly.

■ Fission products can have very long half-lives. After the fuel becomes of no 
further use it must be stored for a very long time under conditions which 
prevent the escape of radiation and radioactive materials from the ‘nuclear 
waste’ into the environment.

■ Accidents and natural disasters can happen. The design of nuclear power 
stations must be able to prevent the release of dangerous materials into the 
environment under extreme circumstances such as a meltdown. 

■ Radioactive materials could be used as weapons by terrorists. Highly enriched 
uranium can be used to manufacture atomic bombs. 

 Solving problems relevant to energy transformations 
in nuclear power stations 

QUESTIONS TO CHECK UNDERSTANDING
12 a Distinguish between the radioactive decay of uranium-235 and the fission of uranium-235. 

b Suggest why nuclear fission has much greater possibilities as a power source than radioactive decay.

13 Why are waste materials from nuclear power stations dangerous, and how is that risk minimized?

14 Explain why it is much easier to separate isotopes of hydrogen than isotopes of uranium.

15 Explain what would happen if all the pressurized water in the reactor shown in Figure 8.6 were to leak out of the 
system.

16 Make lists of the principal advantages and disadvantages of nuclear power.

17 The rest mass of a uranium-235 nucleus is 218.9 GeV. 

a Express this mass in unified atomic mass units. 

b If the rest masses of the two nuclides produced in fission are 127.5 GeV and 88.4 GeV, calculate the energy released 
in each fission, which also produces three neutrons. 

c Calculate the energy that would be released from the fission of 1.0 kg of uranium-235. 

d What would be the average output power of a nuclear power station which transferred this amount of energy from 
fission over a period of 1 year? Assume its overall efficiency was 30%.

e Estimate the total amount of enriched uranium needed every year in this power station.

Expert tip

Many factors contribute to the 
dangers to health posed by 
radioactive materials, principally 
the type of radiation(s) emitted, 
the physical state of the source and 
its activity. The activity of a pure 
source depends on the amount of 
radioactive material and its half-life. 
A longer half-life means that risks will 
be present for longer, but the activity 
will be less (for equal amounts).
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Wind power
■ We are using the term wind generator to describe an electricity generator 

powered by the wind. Winds are caused by temperature and pressure 
differences in the air. The original source of the energy in the wind is the Sun.

■ There are enormous amounts of energy in the air moving around the surface 
of the Earth, but that energy is well spread out (due to the low density of 
air), and the power available in any particular location will vary considerably 
depending on weather conditions. 

■ The locations of wind power stations (with many generators), commonly 
known as wind farms, need to be chosen carefully: windy places on bare hills 
and/or close to the sea are ideal, and offshore sites can be excellent, although 
they involve extra costs. See Figure 8.8). The rotating blades need to be well 
above ground/sea level to avoid turbulence and friction. Some people are 
opposed to wind farms because of noise and visual pollution.

■ A single wind generator may be ideal for an isolated home, but the 
unpredictability of the output means that another energy source will be 
needed at times of no wind, and/or excess energy can be stored in batteries 
when there is strong wind.

 Describing the basic features of wind generators 
■ Consider Figure 8.9 which shows a ‘cylinder’ of air about to strike the three 

blades of a wind generator perpendicularly. This is the most common design 
for large generators. Wind generators are usually able to rotate so that they 
always receive the wind perpendicularly.

this length of wind
passes every second

area, A

wind speed v

density of air ρ

r

Figure 8.9

■ Assuming that all the kinetic energy of the air is transferred to electricity, the 
maximum theoretical output power can be calculated from P = 12 Aρv 3. (There 
is no requirement for students to be able to derive this equation.)

■ For the sake of simplicity, the use of this equation makes some important 
assumptions:

 the wind is moving perpendicularly to the plane of the blades
 the air which strikes the blades will lose all of its kinetic energy
 the turbine and generator will be 100% efficient
 neighbouring generators will not affect the wind flowing past each other.

■ These assumptions may be unrealistic, however the equation does give us 
a good guide to the power that should be available from a generator of a 
particular size, especially if we understand that actual efficiencies will vary 
depending on wind speed and may have a maximum value of around 40% 
efficiency at transferring available wind energy to electrical energy. 

Figure 8.8

Key concept
A wind generator transfers the 
kinetic energy of the air to the 
rotation of a turbine and then 
to electricity in an electrical 
generator.



8.1 Energy sources 137

 Solving problems relevant to energy transformations 
in the context of wind generators 

Expert tip

Clearly, longer blades will transfer more energy (power is proportional to the area 
swept out and the square of the radius). However, longer blades will be heavier and 
subjected to greater forces (for the same rate of rotation), so that they (and the rest of 
the structure) need to be made stronger. Engineers need to decide whether it is more 
economical to construct more, smaller generators than fewer larger ones.

■ The equation shows us that the power is dependent on the wind speed cubed. 
Doubling the wind speed will result in multiplying the power output by a 
factor of 23 = 8. This example stresses the need for wind generators to receive 
strong winds. Stronger winds should not imply that the blades need to rotate 
faster. In fact generators will have an optimum speed of rotation which may 
seem surprisingly low. Rotational speeds of the blades and the turbine are 
adjusted to suitable values by gear systems.

■ The physics of circular motion (Section 6.1) could also be involved in these 
calculations.

QUESTIONS TO CHECK UNDERSTANDING
18 a Calculate the output power of a wind generator with blades of length 

25 m for a wind speed of 4.0 m s−1. Assume an efficiency of 30%. The 
density of air is 1.3 kg m−3. 

b Sketch a graph to show how the power output varies up to wind speeds 
of 16 m s−1.

19 Draw a Sankey diagram to represent the operation of a wind generator.

20 What length of blades is needed to produce an output of 2.0 kW at 25% 
efficiency for winds of speed 8.0 m s−1?

21 List the advantages and disadvantages of using wind power to generate 
electricity.

22 Consider a very large wind generator with a radius of 85 m, spinning at 18 
revolutions per minute. 

a Calculate:

i the angular velocity of the blades

ii the linear speed of a point at the tip of a blade.

b Consider 10 kg of material as part of the tip of the blade. What is the 
centripetal force acting on it? 

c Explain why there are practical limits on the diameter and rotational 
speeds of wind generators.

Hydroelectric power 
■ The kinetic energy gained by falling water is used to turn turbines and 

generate electricity in hydroelectric power stations. See Figure 8.10.

turbine

generator power lines
transformer

river

reservoir

Figure 8.10
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■ This is a relatively efficient process, typically 90%.
■ Water stored in lakes and reservoirs got its gravitational potential energy from 

the radiant energy of the Sun when it was evaporated to form clouds, which 
later fell as rain or snow.

■ Hydroelectric power stations vary in capacity, but enormous volumes of water 
are needed to generate sufficient power for large cities. The number of hilly, 
rainy locations where this is possible is limited. The power stations have the 
advantage of high efficiencies but there can be many environmental problems.

■ The maximum power available can be calculated from potential energy lost by 
water/time taken, P = mgΔh

t
. 

■ Using this equation, we see that 1 kg of water falling 50 m every second 
would transfer about 500 W of power. A specific energy of 500 J kg−1 is very low 
compared to other energy sources.

 Storing electrical energy
■ The demand from consumers for electrical power varies considerably, 

especially between daytime and night-time. An electrical power system must 
have ways of coping with these variations.

■ Current electricity cannot be stored as such, but it can be transferred to 
another form and then turned back to electricity later. Re-chargeable 
(secondary) batteries are a common example of this concept, but they are 
unable to store large amounts of energy. Pumped storage hydroelectric systems are 
the only large-scale, economic way of ‘storing electrical energy’.

 Describing the basic features of pumped storage 
hydroelectric systems 

■ It is better for power systems to keep fuel-powered stations working close to 
their most efficient outputs, so operators often encourage customers to use 
power at night by offering lower prices at those times.

■ Low-price electricity can be used to pump water up to a reservoir and the profit 
from selling the hydroelectricity at a higher price at peak times can more than 
offset the 20% (approximate) loss of energy in the process.

■ Hydroelectric power also has the considerable advantage that the output of 
the systems can be adjusted relatively quickly at times of high demand. This is 
especially useful if hydroelectricity is used in conjunction with the other less 
flexible sources, for example wind power or solar power. 

■ Pumped storage systems need to be in hilly locations. They may be part 
of a hydroelectric power station, or operate independently, when they add 
temporary capacity at peak times to a power supply network without using any 
primary energy source.

■ Figure 8.11 shows the Senneca pumped storage system in Pennsylvania, USA.

■ Figure 8.12 shows energy transfers in hydroelectric systems.
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Figure 8.12

 Solving problems relevant to energy transformations 
in the context of pumped storage hydroelectric 
systems 

■ Calculations may involve the equation P = mg Δh
t , efficiency and the density of 

water.

Common mistake

The height, ∆h, used in these 
calculations may need to be 
considered carefully. Under some 
circumstances the water level may 
change significantly during the 
operation of the power station.

Key concept
In a pumped storage 
hydroelectric system, at times 
of low power demand, water is 
pumped up from a lower reservoir 
to an upper reservoir and released 
later to generate hydroelectricity 
when needed. 

Figure 8.11
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QUESTIONS TO CHECK UNDERSTANDING
23 List the advantages and disadvantages of using hydroelectric power.

24 Explain why hydroelectric power stations are much more effi cient than most 
other electricity generating systems.

25 10 000 kg of water fl ows through a hydroelectric power station every 
minute. If the water falls a vertical height of 74 m, determine the output 
power of the station. Assume that the overall effi ciency is 87%.

26 The average output from a small renewable energy power system is 
1.4 MW, but during the day this output can vary by as much as 60%. In 
order to maintain the output at 1.0 MW (at least) the system incorporates 
a pumped storage hydroelectric system with a vertical height of 56 m 
between its upper and lower reservoirs. Determine the maximum water 
fl ow rate (m3 s−1) in the system (assume the overall effi ciency is 85%). 
Density of water is 1000 kg m−3.

Solar power
■ Radiated energy arrives from the Sun on the upper atmosphere at an intensity 

of approximately 1400 W m−2 (intensity = power
area ). This 

radiation is mainly visible light and infrared. See Figure 8.13.

■ There are wide variations in the intensity reaching the Earth’s 
surface. These are due to latitude, weather, seasons and time 
of day. Devices which use solar energy may be rotatable, so 
that the incident energy always arrives perpendicularly, so 
maximizing the total power received by the device.

■ Individual solar-powered devices often need to be used with 
some kind of energy storage system (e.g. batteries or hot 
water) so that they can continue to be of use at times when 
less radiation is received.

■ The average intensity received over the whole of the Earth’s 
surface (over 24 hours) is about 250 W m−2.

■ There are two principle ways in which we use this 
renewable energy source directly: solar heating panels and 
photovoltaic cells (which are widely called solar cells).

 Describing the differences between photovoltaic 
cells and solar heating panels 

■ Solar heating panels are placed on the roofs of many homes in order to transfer 
radiant energy from the Sun directly to internal energy in water. The energy is 
then transferred using a heat exchanger to hot water which can be used in the 
home. See Figure 8.14. They can be about 50% efficient.
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Figure 8.13

Key concept
In a solar heating panel radiant 
energy from the Sun is transferred 
to internal energy in water. 

In a photovoltaic cell the radiant 
energy produces a potential 
difference across a semiconductor.
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 Describing the basic features of solar power cells 
■ A photovoltaic (solar) cell produces a potential difference (voltage) across it 

when radiant electromagnetic energy releases electrons within the semi-
conducting materials of the cell. 

■ Individual photons within the radiation transfer energy to individual 
electrons, enabling them to escape from their atoms. This is similar to the 
photoelectric effect which is discussed in Chapter 12 (HL).

■ Solar power cells may be used individually (providing a low emf and significant 
internal resistance), or in small panels, or with very many panels in a large array.

■ Cells may be connected in series or parallel to obtain a suitable overall potential 
difference and internal resistance. Recent developments have seen them used in 
high power solar-power stations connected to national electricity grids.

■ There are many different kinds of solar cells (including thin films). They have 
a range of different efficiencies, mostly in the range 20–30%.

 Solving problems relevant to energy transformations 
in the context of solar power systems 

■ Questions may involve the intensity of radiation, the area receiving radiation, 
specifi c heat capacities and the effi ciency of a system. Knowledge of electrical 
circuits from Chapter 5 may be needed. 

QUESTIONS TO CHECK UNDERSTANDING
27 Distinguish between a panel of solar cells and a solar heating panel.

28 Describe how you could investigate the electrical properties of a solar cell.

29 Figure 8.15 shows six solar cells connected together. Each cell has an emf of 
0.80 V and an internal resistance of 4.0 Ω. Determine for this arrangement 

a the total emf 

b the total internal resistance.

30 Figure 8.16 shows solar radiation of intensity 480 W m−2 incident perpendicularly 
upon a solar heating panel. 

a Determine the total energy that would be incident upon the panel in one hour. 

b If this energy was used to heat 100 kg of water initially at 15° C and the 
efficiency was 52%, what temperature could be produced in the water 
(specific heat capacity = 4200 J kg−1 K−1)? 

c By the time that the sun sets the incident radiation (shown with dotted lines) 
has fallen in intensity to 220 W m−2 and the angle of incidence has changed 
by 40°. Calculate the percentage by which the total energy arriving on the 
panel every second has changed. 

d Explain why the intensity is less later (or earlier) in the day, than in the middle 
of the day.

Figure 8.15

480 W m−2 solar panel
1.40 m × 0.90 m 

40°

Figure 8.16

New and developing technologies 
■ Reminder from Section 3.1: Thermal energy is the name we give to the energy 

transferred from place to place as a consequence of temperature differences.
■ Students are expected to be aware of new and developing technologies which 

may become important during the life of this Guide.

NATURE OF SCIENCE

 Risks and problem-solving 
There have always been very clear and considerable risks associated with the 
processes of providing the power that the people of the world want for their 
everyday lives. These include the dangers of extracting fossil fuels from the 
ground, the possibilities of accidents when transporting fuels or in nuclear 
power stations, and the consequences of global warming. Recent research and 
development of renewable energy sources has involved very considerable efforts 
from scientists around the world to help to solve these problems.
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8.2 Thermal energy transfer
Essential idea: For simplified modelling purposes the Earth can be treated as a 
black-body radiator and the atmosphere treated as a grey body.

Conduction, convection 
and thermal radiation 
■ Reminder: Thermal energy is the name we give to the energy transferred from 

place to place as a consequence of temperature differences.
■ If an object contains parts which are at different temperatures, the hottest part 

contains the particles with the highest average random kinetic energy. 
■ When particles collide (interact) energy will be transferred from the particles 

with greater kinetic energy to particles with less kinetic energy. In this way 
the thermal energy spreads out until all places have particles with the same 
average kinetic energy. This familiar process is called thermal conduction. 

■ Metals are good conductors of thermal energy because the energy is mostly 
transferred by the collisions of free electrons between themselves, and between 
electrons and ions. Most non-metals, liquids and gases are poor conductors of 
heat (they are good insulators). 

■ Convection currents arise because of the movement of the hotter parts of a 
gas or liquid when they become less dense (than other parts of the fluid) due 
to the expansion which occurred when they were heated.

hot
radiator

cold window
warm air rising

cool air falling

Figure 8.17

■ Figure 8.17 shows a simple example of convection: after thermal energy has 
been conducted from the hot radiator into the air around it, the air expands, 
becomes less dense and rises. The rising warmer air is replaced by cooler air 
from below. This encourages the circulation of air as shown in the fi gure 
(a convection current).

■ The third principal means of energy transfer is by radiation. All substances 
emit electromagnetic radiation due to the motions of charged particles inside 
them. This is called thermal radiation and it is mainly infrared (and visible 
light if the substance is at very high temperatures). See Section 4.2 for typical 
wavelengths. Unlike conduction and convection, which need a medium 
through which to travel, thermal radiation can travel across vacuum. The rest 
of Section 8.2 is about radiation, the only means by which thermal energy can 
be transferred to or from the Earth. 

QUESTIONS TO CHECK UNDERSTANDING
31 Outline an experiment which demonstrates that different materials conduct 

thermal energy at different rates.

32 Explain why the radiator shown in Figure 8.17 might be better placed under 
the window.

33 Give three examples of good conductors. Explain why good conductors of 
thermal energy are also good conductors of electricity. 

Expert tip 

Convection is a very common and 
important phenomenon in liquids 
and gases. It is the principal means 
of thermal energy transfer in fluids. 
For example, an understanding of 
convection is essential in explaining 
the weather, ocean currents and 
movements within the Earth’s molten 
core. Preventing convection currents 
is often a key feature of good thermal 
insulation. Water and air are good 
insulators if convection currents 
within them can be stopped.

Key concept 
The three principle means of 
thermal energy transfer are 
conduction, convection and 
radiation.
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Black-body radiation
■ Any object will appear black if very little light is reflected or scattered off its 

surface. (This is because the light is absorbed).
■ Good absorbers of radiation are also usually good emitters of radiation. 

Conversely, most poor emitters of thermal radiation are also poor absorbers of 
radiation. White, or shiny, surfaces are a good example.

■ A perfect black body is an idealized object which emits the greatest possible 
amount of electromagnetic radiation.

 Sketching and interpreting graphs showing the 
variation of intensity with wavelength for bodies 
emitting thermal radiation at different temperatures 

■ Figure 8.18 compares spectra of black-body radiation at different temperatures.

■ A black-body spectrum depends only on temperature, not on the composition 
or shape of the emitter.
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 Radiated power 
■ The area under any graph such as that shown in Figure 8.18 is an indication of 

the total power emitted by the object.
■ The total power, P, of the electromagnetic energy emitted from the surface of 

any perfect black body depends only on its area, A, and temperature, T (not its 
composition or mass).

■ The emitted power can be calculated using the Stefan–Boltzmann law.
■ The fact that temperature is raised to the power of four in this equation 

indicates that radiated power is very temperature dependent. (For example, 
doubling the absolute temperature of an object increases the emitted power by 
a factor of 24 = 16.)

■ Note that a very hot black body will emit a lot of visible light and will 
certainly not appear black. The Sun is a good example.

 Emissivity 
■ A perfect black body is an idealized concept. In practice, the total power 

radiated from all objects will be less than this ideal, although most very hot 
objects are close to being ‘perfect’ emitters.

■ A perfect black body has an emissivity of one. All objects with surfaces which 
emit less power (for the same temperature and area) have an emissivity of less 
than one. They are sometimes described as grey-bodies. Most materials have 
high emissivities. 

Key concepts
The Stefan–Boltzmann law,  
P= σAT 4, is used to calculate the 
power emitted by a perfect black 
body.

σ is known as the Stefan–
Boltzmann constant  
(= 5.67 10−8 W m2 K−4)

Key concept
The emissivity, e, of a surface 
is defined as power radiated/
power radiated by a black body of 
the same area and temperature 
(no units), so that the Stefan–
Boltzmann law becomes  
P = erAT 4. 

Key concepts
A perfect black body is an 
idealized object which absorbs all 
the electromagnetic radiation that 
falls upon it.

Black-body radiation can be 
defined by a graph which shows, 
for a given surface temperature, the 
intensity distribution (spectrum) 
over the different frequencies 
emitted.
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 Relating surface temperature to the emitted 
spectrum 

■ As can be seen in Figure 8.18, the peak of a black-body distribution curve 
moves to shorter wavelengths (higher frequencies) as the temperature is 
raised. The value of the wavelength at the peak of the curve, max, is inversely 
proportional to the absolute temperature. This is represented by Wien’s 
displacement law.

 Solving problems involving the Stefan–Boltzmann 
law and Wien’s displacement law 

■ The Stefan–Boltzmann law can be used to determine the radiated power 
emitted from any object if its area, temperature and emissivity are known.

■ Wien’s displacement law provides an important and straightforward way of 
connecting a spectrum to the temperature of the object which emitted it.

Key concept
Wien’s displacement law: 

kmax (metres) = 2.90 10
(kelvin)

–3×
T

Radiation from the Sun 
■ We can calculate the power emitted from the Sun by using the equation 

P = e AT 4. (This gives a value of 3.8 × 1026 W.)
■ We can assume that this power spreads out equally in all directions with 

negligible absorption, so that its intensity, I, will decrease according to an 
inverse square law (Section 4.3). See Figure 8.19.

imaginary sphere
of surface area 4 r2

(not to scale)

Sun

power P
r

planet

Figure 8.19

QUESTIONS TO CHECK UNDERSTANDING
34 Use Figure 8.18 to describe the main differences between the radiation emitted from black bodies at 5500 K and 3500 K.

35 a Determine the power emitted by an object of surface area 120 cm2, emissivity 0.74 and surface temperature 100 °C. 

b In what part of the electromagnetic spectrum is this radiation?

36 The fi lament in a light bulb is 9.6 cm long. If it has a radius of 0.06 mm and is supplied with electrical energy at a rate of 
60 W, what will be the surface temperature of the fi lament? (Assume an emissivity of 1.0.)

37 A surface emits black-body radiation which has a peak frequency of 5.2 × 1014 Hz. 

a In what part of the spectrum is this? 

b What is its temperature?

38 A star of radius 5.0 × 105 km has a surface temperature of 7200 K. Use the Stefan–Boltzmann law and Wien’s 
displacement law to determine:

a the wavelength at which it radiates maximum power

b the power emitted by this star.
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 The solar constant 
■ Since intensity, I = P

A
power,
area,

, the intensity of the radiation at different 

distances, r, from the Sun can be calculated from: I
P
r4 2π

== . 

■ This equation can be used to determine the intensity of radiation falling on an 
area above the Earth’s atmosphere which is perpendicular to the direction in 
which the radiation is travelling. Its value is 1.36 × 103 W m–2 and it is called 
the solar constant, although there are slight variations mainly due to cyclical 
changes within the Sun itself, as well as small changes to the Sun–Earth 
distance. See Figure 8.13. 
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Key concept
Albedo (`) = total scattered 
power/total incident power (there 
are no units because it is a ratio).

Expert tip 

The Stefan–Boltzmann law and Wien’s displacement law are widely used in 
astronomy (Option D). The power emitted by a star (called its luminosity), the received 
intensity and the star–Earth distance are easily connected by the inverse square law. 
The temperature of a star can be determined from its emission spectrum.

 Albedo and emissivity of the Earth
■ The (equilibrium) temperature of the Earth’s surface and surrounding 

atmosphere is discussed later in this section. In broad terms, the temperature 
depends on: 

 the radiated power received from the Sun (as above)
 the percentage which is refl ected straight back into space (represented by 

the Earth’s albedo: see right)
 the power radiated away from the Earth’s surface and its atmosphere 

(dependent upon the their emissivities).
■ The emissivity of the Earth’s surface is generally greater than 0.9 and we may 

often consider that it is effectively a black body, but the effect of clouds and 
the atmosphere reduces the average value of the Earth and its atmosphere to 
an emissivity usually assumed to be about 0.6. The atmosphere may be said to 
act as a grey body. 

■ Surfaces which scatter and reflect radiation well (and absorb poorly), like snow 
and ice, are said to have a high albedo.

■ The average albedo of the Earth and its atmosphere is usually assumed to be 
about 0.3. The high percentages of water, snow and ice on the Earth’s surface, 
together with cloud coverage, have the greatest effects on this overall average. 
Figure 8.20 represents the approximate values for the albedos of water, ice, snow 
and land/vegetation. 

■ All albedo values for various materials should be considered as just guides 
because they can change with a more detailed knowledge about the nature 
of the surface, and with the angle of incidence of the radiation. There are 
variations of albedo during the day, during the year and at different latitudes. 
Albedo values are also dependent to some extent on the wavelengths of the 
radiation.

Key concept
The solar constant is the value 
of the intensity of the radiation 
from the Sun reaching the top of 
the Earth’s atmosphere.

Key concept
The averages of the Earth’s albedo 
and emissivity are approximately 
0.3 and 0.6 (this includes the 
atmosphere).

QUESTIONS TO CHECK UNDERSTANDING
39 Use the value of the solar constant and the Earth–Sun distance (1.5 × 1011 m) 

to confi rm the radiated power emitted from the Sun.

40 Calculate the total power radiated away from the Earth. Assume the 
average surface temperature is 16 °C, the radius is 6.4 × 106 m and its 
average emissivity is 0.61.

41 A lake has a surface area of 3.4 km2. In the middle of the day the average 
albedo is 0.08, by the late afternoon it has risen to 0.13. 

a Suggest why the value of the albedo changed. 

b If the incident power from the Sun is 235 W on each square metre of the 
lake’s surface at noon, at what rate is energy absorbed by the lake? 

c By the late afternoon the incident power is halved. What is the intensity 
of the reflected radiation at that time?
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The greenhouse effect 
■ The Earth’s atmosphere keeps the planet warmer than it would be without 

an atmosphere. This is called the (natural) greenhouse effect. It is important 
to distinguish between the natural greenhouse effect (which is beneficial) and 
the enhanced greenhouse effect (which is contributing to global warming: see 
later).

■ Consider the Earth (radius r) as it is now, but without an atmosphere: total 
power received = r2 × 1360 W m−2. Power radiated away, P = e (4πr2)T 4. 
Assuming (for the sake of simplicity) an emissivity of 1 and an albedo of 0.3, 
this equation indicates that the equilibrium surface temperature of the Earth 
without an atmosphere would be approximately 250 K. The actual average 
surface temperature of the Earth with an atmosphere is believed to be 287 K. 
The increase is due to the greenhouse effect.

 Describing the effects of the Earth’s atmosphere on 
mean surface temperatures

■ Now consider the effect of an atmosphere: about 30% of the radiation 
received from the Sun is reflected and about 20% is absorbed by the 
atmosphere. The remaining 50% (approximately) is absorbed by the Earth’s 
surface. However, when infrared radiation is emitted from the Earth’s 
surface, a much higher percentage is absorbed in the atmosphere. This is 
because the emitted radiation has longer wavelengths than the incoming 
radiation from the Sun. The energy is then re-emitted by the atmosphere, 
but in random directions, so that some of the radiation which was travelling 
away from the Earth is radiated back towards the Earth. This results in a 
higher equilibrium temperature of the Earth’s surface (compared to an Earth 
without an atmosphere). 

■ Figure 8.21 indicates what happens to the total solar radiation incident on the 
Earth and its atmosphere. (Note that the height of the atmosphere has been 
much exaggerated for the sake of clarity.)

About 30% is
reflected away by
the Earth and its
atmosphere.

About 50% is
absorbed by the
Earth’s surface

About 20% is
absorbed in the
atmosphere

About 70%
passes into the
atmosphere.

Most of the infrared radiation
emitted by the Earth’s surface
is absorbed and re-emitted in
random directions

Sun

Earth

atmosphere

Infrared radiation is
emitted from the
Earth’s surface

Figure 8.21

■ The reason for the absorption in the atmosphere of some radiation from 
the Earth’s surface, is that the atoms within all gas molecules oscillate (see 
Figure 8.22 for an example which shows possible oscillations in a carbon 
dioxide molecule) and, if the frequency of these oscillations is the same as the 
frequency of the radiation, then energy is transferred from the radiation to the 
molecules (increasing their kinetic energies of oscillation). 

C

O

O

Figure 8.22

Key concept
Greenhouse effect: Infrared 
radiation emitted by the Earth is 
partially absorbed by certain gases 
in the atmosphere. The radiation 
is then re-emitted in random 
directions. Some of it is then 
re-absorbed by the Earth’s surface, 
keeping it warmer than it would be 
without an atmosphere.
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■ The radiation which can be absorbed by this effect is only found within 
the infrared section of the electromagnetic spectrum. These wavelengths 
are common in the radiation emitted from the Earth, but less common in 
the radiation emitted by the much hotter Sun (consider again Figure 8.18). 
The effect of the atmosphere is similar to that of the glass in a greenhouse: 
the shorter wavelengths from the Sun can pass through, but some of the 
longer wavelengths emitted from the plants, etc. inside cannot pass back out 
through the glass.

■ The gases which contain molecules capable of absorbing infrared radiation are 
commonly known as the greenhouse gases. The most common ones are 
water vapour, carbon dioxide, methane and nitrogen dioxide. All these gases occur 
naturally, but the last three are now present in the atmosphere in increased 
amounts because of human activities.

Expert tip

When any system which can oscillate is disturbed by another external oscillation, 
energy can be transferred to that system if its natural frequency of oscillation is 
the same as the external frequency. This effect is called resonance and it is dealt 
with in Option B (HL). Molecules of greenhouse gases resonate in the infrared 
section of the electromagnetic spectrum. 

■ Figure 8.23 shows a more detailed representation of the energy flows to and 
from the Earth and its atmosphere. (The numbers are approximate and need 
not be remembered.)

atmosphere

Earth’s
surface

energy transferred
from the atmosphere
to the ground (324 W m–2)

radiated from the
atmosphere into
space (193 W m–2)

radiated directly
into Space from
the Earth’s surface
(40 W m–2)

energy transferred
away from the
Earth’s surface
(491 W m–2)

energy transferred from the
ground to the atmosphere
(451 W m–2)

radiation from the
Sun absorbed by
the atmosphere
(66 W m–2)

radiation from the Sun
absorbed by the Earth’s
surface (167 W m–2)

radiation from Sun
which is absorbed by
the Earth’s surface
or atmosphere
(233 W m–2)

Figure 8.23

The enhanced greenhouse 
effect and global warming 
■ Human activities, especially burning fossil fuels, have increased the 

concentration of greenhouse gases in the atmosphere (although the 
percentage of water vapour has not changed significantly). This has 
almost certainly led to an enhanced greenhouse effect and global warming.

■ As evidence for the enhanced greenhouse effect, there is a reasonably close 
correlation between mean global temperatures and the amount of carbon 
dioxide in the atmosphere, (i) over hundreds of thousands of years (using ice 
core research) and (ii) in recent years, since more accurate measurements have 
been possible.

Key concept
Greenhouse gases in the 
atmosphere (for example carbon 
dioxide) absorb infrared radiation 
because their molecules oscillate 
at the same frequencies as the 
radiation.

Key concept
Enhanced greenhouse effect: 
The Earth’s atmosphere has been 
slightly changed because of human 
activities. Greater concentrations 
of greenhouse gases have resulted 
in slightly less infrared radiation 
being radiated into space. As a 
consequence, it is believed that 
global temperatures are slowly rising.
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■ As a result of human activities, more infrared energy is absorbed by the 
increased concentration of greenhouse gases, so that more energy is re-
radiated back to the Earth’s surface, resulting in a higher equilibrium 
temperature.

■ Scientists believe that even a small increase in average temperature will lead 
to climate changes and subsequent slight changes to the Earth’s average albedo 
and emissivity, which are then likely to lead to further temperature increase 
(positive feedback). 

■ To reduce global warming, we should try to reduce our use of energy. 
Much greater use of renewable energy resources and nuclear power will 
also decrease the amount of fossil fuels that will need to be burned. The 
efficiency of power stations can be slightly improved (using natural gas is the 
most efficient) and combined heat and power stations can use the thermal 
energy that is usually transferred wastefully to the surroundings for heating 
nearby buildings.

Common mistake

It is important to distinguish between the natural greenhouse effect and the 
enhanced greenhouse effect which has man-made origins.

 Energy balance in the Earth surface–atmosphere 
system 

radiation

radiated away

from the Earth

radiation arriving

at the Earth from

the Sun

1.74 × 10
17

 W

atmosphere

(not to scale)

Earth

Figure 8.24

■ A planet, like the Earth, will stay in energy balance (thermal equilibrium) if 
the average power of the radiation that it receives, equals the average power it 
radiates into space.

■ Using the equation: solar constant × cross-sectional area of Earth ×  
(1 – albedo, α) = eσAT 4 confirms an average surface temperature of the Earth 
of about 290 K (using e = 0.60 and α = 0.30), which is close to the accepted 
value of 287 K.

■ This equation is a simple, but informative, model of a very complex 
situation. It can be used to make basic predictions of the consequences if 
global warming leads to significant changes in the Earth’s average emissivity 
and/or albedo.

■ Computer programs can be used to develop much more detailed climate 
models and predict possible future outcomes. However, the situation is 
extremely complicated, with many interconnected variables. Despite 
considerable international efforts and expertise, there is still no widespread 
consensus about the detailed consequences of global warming.

Key concept
The Earth’s temperature adjusts so 
that that the power of the infrared 
energy radiated away into space 
equals the power of the incident 
solar radiation. This under-lying 
principle is an important basis for 
models of the future climate.
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Solving problems involving albedo, 
emissivity, solar constant and the 
Earth’s average temperature 

QUESTIONS TO CHECK UNDERSTANDING
42 Make a calculation which confi rms that the average temperature of the 

Earth without an atmosphere would be about 250 K.

43 Explain how the natural greenhouse effect increases the surface 
temperature of any planet which has an atmosphere.

44 a Explain what is meant by saying that water vapour is a ‘greenhouse gas’. 

b Explain why scientists are not worried that water will contribute to the 
enhanced greenhouse effect. 

c Name the three principal greenhouse gases (other than water vapour). 

d Choose one of these three gases and explain why there is an increased 
amount of it in the atmosphere.

45 Explain how the enhanced greenhouse effect can lead to global warming.

46 a Use the equation in the previous section to confi rm that it predicts an 
average surface temperature for the Earth of 290 K (using e = 0.60 and 
α = 0.30).

b Determine the temperature rise that this simple model predicts if, for 
example, the Earth’s emissivity and albedo both fell by 5%.

NATURE OF SCIENCE

 Simple and complex modelling 
The kinetic theory of gases (Section 3.2) is a model that can be applied 
successfully to relatively small amounts of gases in closed containers. The Earth’s 
atmosphere is also a gaseous system, but one which is vastly larger and more 
complex. Meteorologists use computer modelling to predict the weather in a 
particular location with reasonable accuracy up to about ten days in advance. 
However, predicting the climate of an entire planet with any certainty for many 
years in the future is a very diffi cult, if not almost impossible task. However, 
climate modelling is a problem which has understandably attracted an enormous 
amount of scientifi c attention in recent years and, with the availability of better 
data and faster processing, together with international collaboration, long-term 
climate models are believed to have become more consistent and reliable. We will 
have to wait to see how accurate they are!



Wave phenomena

9.1 Simple harmonic motion
Essential idea: The solution of the harmonic oscillator can be framed around the 
variation of kinetic and potential energy in the system.

The defining equation of SHM 
■ SHM has already been introduced in Section 4.1. 
■ In this section we will take this further by putting a constant into the 

equation, enabling a mathematical approach which will allow the calculation 
of displacements, velocities and energies at any chosen time:

■ Angular velocity, ω, (first met in Section 6.1) is a key feature in describing all 
simple harmonic motions. This may seem strange at first because, for example, 
a mass oscillating with SHM on the end of a spring is clearly not rotating in 
a circle. However, circular motion and oscillations are mathematically very 
similar. Figure 9.1 shows why: as a particle moves in a circle with constant 
speed, its projection onto the diameter, P, oscillates back and forth with simple 
harmonic motion. 

■ Reminder from Section 6.1: angular velocity, ω = 
TT
22ππ

 or ω = 2πf. These 
equations enable us to quickly convert observed time periods, or frequencies, 
into the equivalent angular velocities in rad s−1 (as needed in the equations 
later in this section).

particle moving in a
circle at constant speed

P oscillates along
the diameter

r x

P

Figure 9.1

■ A graph of displacement–time can be used to fully represent any SHM, as 
shown in Figure 9.2.
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Figure 9.2

Key concepts
Simple harmonic motion 
occurs when a (restoring) force 
produces an oscillation in which 
the acceleration is proportional to 
the displacement, but in the opposite 
direction: a ∝ −x.

Putting in a constant (ω2):  
a = −ω2x.

9
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Equations for displacement and velocity
■ The graph in Figure 9.2, which starts at t = 0 with zero displacement, is 

sinusoidal in shape and can be represented by the equation: x = x0 sin θ or  
x = x0 sin ω t (remembering from Section 6.1 that ω = θt )

■ The velocity of the oscillating object at any time can be determined 
from the gradient of the displacement–time graph (Section 2.1). If an 
acceleration is required, it can be determined from the gradient of a 
velocity–time graph.

■ The velocity can be determined directly using the equation v = ωx0 cos ω t 
(for an oscillation which has zero displacement at t = 0).

■ Figure 9.3 shows displacement, velocity and acceleration graphs on the 
same axes for easy comparison. A velocity–time graph is π2 out of phase 
with a displacement graph of the same oscillation. The acceleration graph 
is  π2  out of phase with the velocity graph.
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■ Figure 9.4 represents the graphs for a SHM which began at time t = 0 with 
maximum displacement. Note the corresponding equations for displacement 
and velocity: x = x0 cos ω t and v = −ωx0 sin ωt
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Figure 9.4

 Solving problems involving acceleration, velocity 
and displacement during simple harmonic motion, 
both graphically and algebraically 

■ If the angular velocity and amplitude of a SHM are known, the equations 
highlighted above can be used to calculate the displacement, velocity and 
acceleration at any time.

■ More commonly, we may want to know what the velocity is for a given 

displacment, then we can use the equation:  v = ± ω  ( )

Key concept
Graphs showing the variations 
of displacement, velocity and 
acceleration with time during SHM 
are all sine or cosine waves and can 
be represented by trigonometric 
equations. The graphs are out of 
phase with each other.

Common mistake

Be sure to check the displacement 
at time t = 0 before deciding which 
equation to use for subsequent 
displacement or velocity.

Expert tip 

The velocity equations can be 
obtained from the displacement 
equations by the mathematical 
process of differentiation. But this is 
not required by this course.

x2
0 – x2



9.1 Simple harmonic motion 151

QUESTIONS TO CHECK UNDERSTANDING
1 A student determines that a pendulum completes 20 oscillations in 15.81 s. 

a What is: i the period, ii the frequency of this oscillator? 

b Calculate the angular velocity of the oscillations of the pendulum. 

c If the pendulum behaves as a simple harmonic oscillator with amplitude 
8.3 cm, determine its displacement 2.5 s after it was released from its 
maximum displacement. 

2 A simple harmonic oscillator has an angular velocity of 74 rad s−1. 

a What is its frequency? 

b What is the magnitude of the acceleration when it has a displacement of 
1.0 cm? 

c Calculate the maximum velocity of the oscillator if it moves with an 
amplitude of 3.3 cm. 

d Explain why there are two possible answers to part c.

3 Figure 9.5 shows the displacement–time graph for a simple harmonic 
oscillator. 

a What is its angular velocity? 

b Write down an equation to represent this graph. 

c Determine the velocity of the oscillator after 2.5 s.
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Figure 9.5

The simple pendulum and 
a mass–spring system 
■ These two oscillators are the most commonly investigated in school 

laboratories because they approximate well to SHM and also because they 
have time periods which are easily observed and measured.

■ We are surrounded by objects which oscillate and the analysis of more 
complicated oscillators often begins by making comparisons with one of these 
two basic models. For example, oscillations within molecules (for example, in 
greenhouse gases) are often compared to masses vibrating on springs.

■ A simple pendulum can be considered as a point mass oscillating on the end 
of a string which has negligible mass and does not stretch. Metal spheres on 
the end of thin strong strings approximate well to simple pendulums. Figure 
9.6 shows a diagram of a simple pendulum. There are two forces acting on the 
mass, m (the pendulum ‘bob’): its weight, mg, downwards and the tension in 
the string.

■ The mass is not in equilibrium and it will accelerate back towards the vertical. 
The weight, mg, is conveniently split into two components: mg sin θ, which 
provides the restoring force, and mg cos θ along the line of the string, which is 
equal and opposite to the tension.

■ We know from Newton’s second law that F = ma, which can be applied to the 
restoring force, so that: ma = −mg sin θ. A minus sign has been included here 
to represent the fact that the force acts in the opposite direction to increasing 
displacement. 

tension

P

m

mg cos θ

mg sin θ

mg

θ

l

Figure 9.6 
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■ For small angles (up to about 10°), sin θ ≈ θ = x 
l , where x is the displacement, 

so that a = −( g 
l )x.

■ Comparing this equation for acceleration to the defining equation for SHM  
(a = −ω2x), leads to ω2 = g 

l .
■ Since ω = 2  

T , the equation for the period of a simple pendulum is T = 2 l
g .

■ The period does not depend on the amplitude so that the oscillation is 
isochronous. The period is also independent of the mass: all simple pendulums 
of the same length have the same period, regardless of their mass or amplitude.

■ Consider again Figure 4.1, which shows a simple mass–spring system. From 
Section 2.3 we know that if the force on any spring system is proportional to 
the displacement, we can describe it using the concept of force constant,  

k = F 
Δx 

.

■ Restoring force from the springs, F = −kx = ma, so that a = − kx 
m . A minus sign 

has been included here to represent the fact that the force acts in the opposite 
direction to increasing displacement. 

■ Comparing this equation for acceleration to the defining equation for SHM  
(a = −ω2x), leads to ω2 = k 

m .
■ Since ω = 2  

T , the equation for the period of a simple mass–spring system is  

T = 2
m
k .

Energy changes 
■ All mechanical oscillators continuously interchange kinetic energy, EK, and 

some form of potential energy, EP (and some of the energy is dissipated into 
the surroundings as thermal energy). This was discussed in Section 4.1. We 
will now discuss this in more detail by including equations for the energies 
involved.

 Describing the interchange of kinetic and potential 
energy during simple harmonic motion 

■ Figure 9.7 from Section 4.1 is repeated here. It shows how kinetic energy and 
potential energy of perfect SHM vary with displacement.

■ Note that for perfect SHM there is no energy dissipation, so that the total 
energy, ET, remains constant: ET = EK + EP

■ Figure 9.8 shows how these energies change with time.

 Solving problems involving energy transfer during 
simple harmonic motion, both graphically and 
algebraically 

■ We know that EK=
1 
2 mv2 and v = ±ω x x0

2 2( )− , combining these two

equations gives us EK = 1 
2 mω2(x0

2 − x2). 

■ The maximum kinetic energy occurs when potential energy is zero (when 
displacement, x = 0) and it is equal to the total energy of the oscillator:

EK max = ET = 1 
2 mω2x0

2.

■ The potential energy can be determined from EP = ET − EK : EP = 1 
2 mω2x2.

■ Note that potential energy is shown by this equation to be proportional to the 
displacement squared.

Expert tip

A simple pendulum can be used 
in an experiment to determine the 
acceleration due to gravity, g. If 
measurements of period are made for 
different lengths, a value for g can be 
determined from the gradient of an 
T 2 – l graph.

Key concept
By considering the restoring 
forces acting on them, equations 
can be developed for the periods 
of two basic and important 
oscillators: a simple pendulum 
and a mass–spring system.
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QUESTIONS TO CHECK UNDERSTANDING
4 a  Explain why the periods of a simple pendulum and a mass–spring 

system do not depend on the amplitude of their oscillations. 

b What length of a simple pendulum will produce a period of exactly 1.0 s? 

c Sketch a graph to show how the period of a simple pendulum depends 
on its length. 

5 A force of 5.6 N stretches a spring by 4.9 cm. 

a What is the force constant of this spring? 

b A mass of 900 g was made to oscillate vertically on the end of the 
spring. What is the time period of this oscillation? 

c A stopwatch was started when the mass was at its lowest point, which 
was 2.9 cm below its equilibrium position. Determine the displacement and 
velocity of the mass 0.80 s later (assume the motion is simple harmonic).

6 Figure 9.8 represents the energies of a perfect simple harmonic oscillator. In 
reality many practical oscillators will dissipate significant amounts of energy. 

a Suggest a possible reason for this dissipation. 

b Sketch how the potential energy graph would appear if about 50% of 
the total energy was dissipated into the surroundings every oscillation.

7 A 2.8 g mass is oscillating with an angular velocity of 73 rad s−1. This is SHM 
and the amplitude is 2.0 cm. 

a Calculate the total energy of the oscillator. 

b Determine the potential energy when the displacement is 0.38 cm. 

c Calculate the kinetic energy when the displacement is 1.3 cm. 

d What is the maximum speed of the mass? 

NATURE OF SCIENCE

 Insights
The theory of the basic simple harmonic oscillator (as discussed in this section) is 
the starting point for the analysis of a large number of more complex oscillating 
systems (molecular and electronic, as well as mechanical). The simplicity provided 
by basic models which can be easily visualized (pendulums and masses on springs) 
can provide the necessary insight for more advanced modelling.

9.2 Single-slit diffraction
Essential idea: Single-slit diffraction occurs when a wave is incident upon a slit of 
approximately the same size as the wavelength.

■ The wave property of diffraction was introduced in Section 4.4, where it was 
noted that diffraction effects are greatest when the gap (aperture), or obstacle, 
has a size which was similar to the wavelength of the waves.

■ Light waves have a small wavelength (typically 5 × 10−7 m), so if we wish to 
observe the diffraction of light, a very small aperture must be used.

■ The diffraction pattern produced by light passing through a single narrow 
slit was briefly discussed in Section 4.4. In this section that pattern will be 
described in more detail and explained using the concept of interference.

Key concept
A single slit diffraction pattern 
for monochromatic light consists 
of a series of light and dark bands 
(fringes). The central band is twice 
the width of the others and very 
much brighter.

The nature of single-slit diffraction 
■ Figure 9.9 shows a typical experimental arrangement used for observing 

diffraction caused by a narrow slit. In this example, monochromatic laser 
light is being used, although it is not essential. A parallel-sided rectangular slit 
produces the simplest diffraction pattern (the pattern from a circular hole 
would be a series of rings).

Key concept
Single slit diffraction patterns 
can be explained in terms of the 
interference of light coming from 
different points across the width of 
the slit.
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diffraction
pattern

screen

laser

single
slit

bright and
dark fringes

Figure 9.9

■ Figure 9.10 compares the patterns that can be seen when using 
monochromatic light (Figure 9.10a) and white light (Figure 9.10b, 
discussed later). The regions of light and dark are sometimes called bands 
or fringes.

a

b

Figure 9.10

■ If the width of the slit was reduced the pattern would spread out and get dimmer.

 Qualitatively describing single-slit diffraction 
patterns produced from a range of monochromatic 
light frequencies

■ Figure 9.11 shows how the variation in intensity of the light received on a 
screen can be represented graphically. (The values given for the angles are 
explained below.) 

■ This graph can be confused with a similar one for the pattern seen with 
two (or more) slits discussed in Section 9.3, so it is important to note 
the distinguishing features of the single-slit diffraction pattern: the central 
maximum is twice as wide as all the others, and the intensity of the other 
peaks decreases significantly with distance from the centre of the pattern: 
if the central maximum has an intensity of I0, the first has an intensity of 

 about I0 
20  and the second aproximately I0 

50 . (Figure 9.11 is not drawn to scale.)
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 Explaining the single-slit diffraction pattern 
■ If light was incident on a gap with a width equal to the wavelength, diffraction 

would cause the waves to spread out equally in all directions (as described for 
waves generally in Section 4.4). However with light, slits much wider than 
a wavelength must be used in order to allow sufficient light to pass through 
them. A narrow slit of width only 0.1 mm is still about 200× wider than one 
wavelength of light.

■ In the single-slit diffraction pattern, light waves clearly do not spread equally in 
all directions. In order to explain this, waves diffracting away from the slit can 
be considered as a series of wavelets originating from imagined separate sources 
in the slit which are about one wavelength apart from each other. (So that, a 
slit 200× wider than one wavelength would be considered to have 200 sources 
of wavelets.) 

■ These wavelets superpose with each other to produce an interference pattern, 
although it is still called the diffraction pattern of a single slit. This is explained 
as follows:

■ Figure 9.12 shows two wavelets from the edges of a slit of width b. If these 
two wavelets interfere constructively at an angle θ, then the path difference 
between them, b sin θ (as shown) will equal one wavelength, λ (as explained in 
Section 4.4).

■ However, if the two extreme wavelets interfere constructively then waves from 
halfway across the slit must interfere destructively with them because the path 

difference = λ 
2 . This means that wavelets from each point in the lower half 

of the slit can be paired off with wavelets from the top half of the slit. In this 
way the situation in Figure 9.10 becomes the condition for overall destructive  
interference.

 Determining the position of first interference 
minimum 

■ As explained above λ = b sin θ is the condition under which the first 
minimum of the pattern is formed. For the small angles that will be involved 

in this experiment, sin θ ≈ θ, so that the equation p = k 
b  predicts the angle (in 

radians) of the first interference minimum of the pattern produced by light of 
wavelength λ passing through a narrow slit of width b. 

■ Other minima occur at angles which are multiples of θ. Note the angles 
labelled on Figure 9.11. 

■ In the IB Physics course, calculations will only involve determination of the 
position of the first minimum of the pattern.

b
θ

θ

θ

path difference = b sin θ

Figure 9.12

Key concept
The first diffraction minimum 
of a single slit diffraction pattern 

occurs at an angle p = k 
b 

Expert tip

Although this section concentrates 
on visible light, whenever waves of 
any kind are emitted or received, 
we may consider that they are 
passing through an aperture and will 
therefore be diffracted.
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■ Figure 9.13 relates the angle θ to the geometry of a typical experiment.
width of central maximum

slit to
screen

distance

centre of
first minimum

(not to scale)

as seen on
the screen

θ
θ

width b

Figure 9.13

Describing the effect of slit width 
on the diffraction pattern

 Qualitatively describing single-slit diffraction 
patterns produced from white light 

■ If the width of a slit is reduced, the diffraction pattern gets wider and dimmer.
■ Because different wavelengths are sent in different directions by the same 

slit, when white light is diffracted by a narrow slit the pattern seen can be 
considered as the combined effect of many overlapping monochromatic 
patterns. The overall effect is that the interference bands are edged with 
colour, as seen in Figure 9.10b.

QUESTIONS TO CHECK UNDERSTANDING
8 Light of wavelength 5.68 × 10−7 m (568 nm) is passed through a slit of width 

8.4 × 10−2 mm. 

a Calculate the angle at which the first minimum is formed: i in radians, 
ii in degrees. 

b If the pattern is seen on a screen which is 3.42 m from the slit, what is 
the width of the central maximum?

9 a Sketch a labelled graph to show how the intensity of light of wavelength 
476 nm varies with angle (rad) after passing through a narrow slit of width 
5.9 × 10−5 m. Include the central maxima and two others on either side. 

b Add a second graph to your axes to show the effect of halving the slit 
width.

10 Make a copy of the graph shown in Figure 9.11 (which may be assumed 
to represent red light). On the same axes draw a graph to represent the 
diffraction of blue light passing through the same slit.

11 A teacher wished to demonstrate the diffraction of light from a helium laser 
through a narrow slit of width 0.052 mm. What is the minimum distance 
between the slit and the screen in order for the central maximum to have a 
width of 4.0 cm? (Wavelength = 6.12 × 10−7 m.)

Expert tip

When white light passes through 
a narrow slit, some separation of 
colours will be seen within the bands 
(fringes).
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NATURE OF SCIENCE

 Development of theories
The diffraction of light was fi rst noticed hundreds of years ago, but at that time 
no theory of light was able to explain the observations. The wave theory of light 
provided a good explanation of diffraction, but the more recent quantum theory 
of radiation necessitates that the wave theory is amended (not required in this 
chapter).

9.3 Interference
Essential idea: Interference patterns from multiple slits and thin films produce 
accurately repeatable patterns.

■ The interference of coherent waves has already been discussed in Section 4.4. 
The conditions for constructive and destructive interference were explained and 
practical examples given for sound, microwaves and light. 

■ We will now look at the double-slit interference of light (Young’s 
experiment) in more detail and then apply that knowledge to the use of 
multiple slits.

Young’s double-slit experiment 
■ This experiment is of historical importance because it provided the first 

evidence that light travelled as waves (only waves can interfere).
■ Two coherent sources are provided by using two narrow slits to split the 

wavefronts from a single source of light.

 Investigating Young’s double-slit experimentally
■ The experiment is most easily performed with laser light in a darkened room, 

see Figure 9.14. The two narrow slits are close together and placed in front 
of the laser and about 2 m or more from a screen on which the interference 
pattern is observed.

interference
pattern

screen

laser

double
slit

bright and
dark fringes

Figure 9.14

■ Measurements are made of the distance between the centres of the two slits, 
d, the perpendicular distance between the slits and the screen, D, and the 
distance between the centres of neighbouring fringes seen on the screen, s. 
(Usually the separation of a known number of fringes will be measured.)

■ The wavelength, λ, of the light can be determined from the equation given 

previously in Section 4.4: s = 
DDλλdd . The origin of this equation is explained 

below.
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 Qualitatively describing two-slit interference 
patterns, including modulation by one-slit 
diffraction effect 

■ Figure 9.15 compares the interference patterns of monochromatic light and 
white light passing through the same two slits.

■ These patterns may appear similar to single-slit diffraction patterns (Figure 
9.10), but the differences should be noted: the fringes in the centre of the 
(monochromatic) interference pattern are all approximately the same width 
and intensity. Note that modulation of two-slit interference patterns (by 
the one-slit diffraction effect) is not apparent in this figure. Modulation is 
explained later.

 Explaining the double-slit equation 
■ Figure 9.16 shows two parallel light rays representing waves emerging from 

double narrow slits which have a distance d between their centres. If waves 
travelling in this direction interfere constructively, we know that there must 
be a path difference of a whole number of wavelengths, nλ, between them 
(where n is an integer: 1, 2, 3, etc.).

■ From Figure 9.16 we can see that the path difference is d sin θ, so that the 
condition for constructive interference becomes nk = d sin p. In other words, 
constructive interference will occur at angles which have sines of 0, λ 

d , 2λ 
d , 3λ 

d , 
etc. (Usually the angles involved with double-slit interference patterns are 
small, so that sin θ ≈ tan θ ≈ θ.)

■ In the Young’s double-slit experiment, angles cannot be measured directly, 
so they need to be calculated from distances. Consider Figure 9.17: for the 
first bright fringe from the centre (the first ‘order’), n = 1 and sin θ ≈ tan θ 
≈ θ ≈ S 

D. 
■ nλ = d sin θ can then be re-written as s = D 

d
, as given above and in 

Section 4.4.

Key concept
A double-slit interference pattern 
for monochromatic light consists 
of a series of light and dark 
bands (fringes). In the centre 
of the pattern the bands are 
approximately the same width and 
brightness, although the brightness 
is also affected by diffraction 
effects (see below).

Key concept
An equation relating wavelength 
to the spacing of the pattern and 
the dimensions of the apparatus 
can be developed by considering 
the path difference between rays 
travelling to the same point from 
the two separate slits.

θ1

θ3

double
slits

(separation d)

slit to screen distance, D

(almost) equally
spaced fringes

(not to scale)

n = 1

n = 2

n = 3

n = 1

n = 2

s

n = 3

s

s

s

n = 0

θ2

Figure 9.17

path difference = d sin θ

d

θ

θ

θ

Figure 9.16

Expert tip

Of course, if the rays in Figure 9.16 are perfectly parallel they cannot meet and 
the waves cannot interfere. However, remember that d is very small and the 
screen may be 2 m away, so that rays meeting on the screen are very close to 
being parallel.

Figure 9.15

a

b
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 Sketching and interpreting intensity graphs of 
double-slit interference patterns 

■ The pattern of fringes is commonly shown on a graph representing the relative 
intensities at different angles. See Figure 9.18, which represents the centre of 
the pattern.

 Modulation of two-slit interference pattern by one-
slit diffraction effect 

■ The discussion so far of double-slit interference has ignored one important 
factor. We have treated both slits as if they were each a single source of waves, 
whereas earlier in this chapter we explained the diffraction patterns from 
single slits by considering that each slit acts as a source of many wavelets.

■ We can combine these two effects by simply saying that the double-slit 
interference pattern is modulated by the single-slit diffraction effect. This is 
shown in Figure 9.19.

d
nλ

sin q (or q)as seen
on screen

double-slit interference

pattern, peaks at
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λ
b

b
nλ

single-slit diffraction envelope

has minima at

Figure 9.19

Intensity

2λ
d

λ
d

0 sin θ (or θ)λ
d

2λ
d

Figure 9.18

QUESTIONS TO CHECK UNDERSTANDING
12 In an experiment such as that shown in Figure 9.14, a student measured the distance between the centre of the pattern 

and the centre of the sixth bright fringe to be 5.8 cm. If the separation of the slits was 0.085 mm and the screen was 
1.66 m from the slits, determine the wavelength of the light used in the experiment.

13 Monochromatic laser light of wavelength 628 nm is incident upon two parallel slits which have a separation of 0.17 mm. 

a Explain the meaning of monochromatic. 

b Determine the angles at which the first three peaks 
from the centre of the interference pattern occur. 

14 Figure 9.20 shows the intensity variations seen on a 
screen during a double slits experiment using laser light of 
wavelength 5.1 × 10−7 m. The screen was 3.4 m from the 
slits. 

a Explain why the third order (peak) is missing from the 
pattern. 

b Determine: i the separation of the slits, ii the width of 
each slit.

15 Explain why the pattern seen on a screen when white light 
passes through double slits (Figure 9.15b) is coloured.

0.50

Distance from centre of pattern/cm

0

In
te

ns
ity

Figure 9.20

Key concept
The intensity peaks of double-
slit interference patterns vary 
beneath the ‘envelope’ of single-slit 
diffraction. The overall effect is 
that some interference peaks are 
significantly reduced in intensity, 
or may even be missing.
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Multiple slit and diffraction 
grating interference patterns
■ Double-slit interference patterns are usually blurred and of low intensity, but 

if the number of identical slits is increased (keeping the same spacing), the 
patterns for multiple slits become sharper (the peaks are narrower) and more 
intense, as shown in Figure 9.21.

■ Diffraction gratings have a very large number of parallel slits (lines) very 
close together. They are used to disperse light into spectra for analysis (as 
discussed in Section 7.1). 

■ The equation nk = d sin p (as introduced for double slits) can be used for any 
number of identical parallel slits, or, most commonly, for the lines on a diffraction 
grating (where d is the distance between the centres of neighbouring lines).

■ Gratings are distinguished from each other by the number of lines they 
have per millimetre. For example, a grating with 800 lines mm−1 has its lines 
separated by, d = 1.25 × 10−6 m. If this grating was used with monochromatic 
light of wavelength 5.0 × 10−7 m, possible values of n could only be 0, 1 and 
2 (because sin θ has a maximum value of 1). We say that there would be two 
diffraction orders, plus the central order. See Figure 9.22. The angles at which 
these orders occur can be determined from the highlighted equation.

θ1

n = 0 zeroth order

n = 2 second order

n = 2

diffraction
grating

n = 1 first order

n = 1

θ2

Figure 9.22

■ Diffraction gratings are good at separating the different lines of a line 
spectrum. Figure 9.23 compares the abilities of a diffraction grating and double 
slits to separate red and blue light. We say that diffraction gratings produce 
good resolution and resolvance. These concepts are explained in Section 9.4.

2 slits

5 slits

10 slits

Figure 9.21

Expert tip

The approximation θ θ θ can 
be used in the discussion of single-slit 
diffraction and double-slit interference 
because the angles involved are small 
(less than 10°). Diffraction gratings 
typically involve changing the direction 
of the light by much greater angles, so 
this approximation cannot be used with 
confidence.

Key concept
Because a large number of slits are 
involved, diffraction gratings produce 
sharp, intense peaks. Because the 
slits are very close together, gratings 
spread the light through large angles.

0

from double slits

from diffraction
grating

Relative
intensity

sin θFigure 9.23

Common mistake

Confusion between nλ = d sin θ and 
θ = λ/b is extremely common and 
unsurprising! Reminder: nλ = d sin θ 
predicts the angles of constructive 
interference for two or more slits; 
θ = λ/b predicts the first angle of 
destructive interference from a single 
slit.
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 Solving problems involving the diffraction grating 
equation 

■ The equation nλ = d sin θ is commonly used to determine unknown 
wavelengths using measurements taken from diffraction grating experiments. 
Measurements are usually made on lines in the fi rst order spectrum because 
spectra in other orders overlap with each other.

QUESTIONS TO CHECK UNDERSTANDING
16 A fi rst order line in a line spectrum is seen on a screen 9.8 cm from the 

centre of the pattern produced by a diffraction grating with 300 lines mm−1. 
If the screen was 0.76 m from the grating, determine the wavelength of the 
light. 

17 Using the data provided in the text, calculate the two angles (in degrees) 
shown in Figure 9.22.

18 Explain why, when a diffraction grating is used to produce spectra from 
a white light source, it is found that the second and third order spectra 
overlap.

Thin film interference
■ When light is incident upon a transparent medium, some light will be reflected 

off the top surface and some light will be transmitted into the medium. When 
the transmitted light reaches another surface it may be reflected back so that 
the waves reflected off two different surfaces may interfere. However, this will 
only happen if the medium is very thin.

■ Commonly seen examples of thin film interference include the effects 
produced by oil films on water, and soap bubbles. See Figure 9.24.

■ Figure 9.25 uses rays to represent the simplifi ed situation in which light waves 
are only incident normally (perpendicularly) on a parallel-sided fi lm. In order to 
show the refl ection clearly, the incident ray has been drawn at a small angle to 
the perpendicular.

 Describing conditions necessary for constructive and 
destructive interference from thin films, including 
phase change at interface and effect of refractive 
index 

■ We know that constructive interference occurs when the path difference 
equals a whole number of wavelengths, and we can see clearly from Figure 9.25 
that one wave has travelled a distance of 2d more than the other (the total 
distance travelled in the film). 

■ But, apart from the actual distances involved, there are two other factors to 
consider: 
i When light is refl ected from the boundary with a medium with a greater 

refractive index (where it would travel slower) it undergoes a phase 
change of π, which is equivalent to adding a path difference of λ 

2.
ii If a medium is not air, the wavelength of the light in air must be divided by 

n (refractive index) in order to determine the wavelength in that medium. 
For example, if light of wavelength 5.2 × 10−7 m travelling in air enters into 
water of refractive index 1.3, the wavelength in water will be 5.2 × 10−7)/1.3 = 

4.0 × 10−7 m.
■ Taking these two factors into account, the condition for constructive 

interference for light incident normally becomes 2dn = (m + ½)k, where m is 
an integer. (Note that, to avoid confusion with the symbol for refractive index, 
this is different from previous equations, in which n was used to represent an 
integer.) 

■ The condition for destructive interference is 2dn = mk. 
■ These two equations apply to the common situations where there are phase 

changes at one boundary, but not the other. (If the phase changes at both 
boundaries are the same, the conditions for constructive and destructive 
interference are reversed).

Key concept
If the medium is a transparent 
and very thin layer (a film), the 
light waves reflected from the 
two surfaces (interfaces) will be 
coherent, so that interference effects 
can occur between them.

Figure 9.25

Figure 9.24

Q
P

thin film 
of refractive
index n
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phase change of π
for reflected wave
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■ Thin coatings on lenses, solar panels and solar cells reduce the amount of 
light reflected and increase the percentage of light transmitted. The coating 
needs to be  

4 thick (wavelength in the coating).
■ The interference of monochromatic light off the top and bottom of oil films 

can be used to measure their thicknesses.
■ Varying coloured effects are seen when oil or soap films are observed in white 

light (see Figure 9.24). Figure 9.26 helps to explain these observations: it shows that 
the path difference between rays reflected from the two surfaces depends on the 
angle of incidence, so that constructive interference occurs for different colours at 
different angles. The effects seen will also vary with the thickness of the film.

thin film

Figure 9.26

 Solving problems involving interference from thin 
films 

■ Numerical examples in the IB Physics course will be restricted to normal 
incidence on parallel-sided fi lms, so that the two highlighted equations above can 
be used in all calculations where there is a phase change at the top surface (only).

QUESTIONS TO CHECK UNDERSTANDING
19 Light which has wavelength of 405 nm when passing through water of 

refractive index 1.33 is then transmitted into glass of refractive index 1.52, 
what will its wavelength become?

20 Does light reflected from an air/water interface undergo a phase change? If 
so, what is the magnitude of that phase change?

21 a What is the minimum thickness of an oil fi lm on water (refractive index 
1.33) which will produce destructive interference for light of wavelength 
628 nm? (Refractive index of oil = 1.46.) 

b Estimate how many molecules thick the film would be. 

c Suggest how this effect would change if the oil was on glass (refractive 
index = 1.53) instead of water (no calculation expected). 

d Determine one thickness of oil film on water which would produce 
constructive interference for light of wavelength 476 nm.

22 a Explain why anti-refl ection coatings on lenses need to be λ/4 thick. 

b White light has a wide spectrum of different wavelengths; suggest 
which wavelength would be included in a calculation to determine the 
thickness need for a lens coating.
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NATURE OF SCIENCE

 Curiosity
The fascinating phenomenon of some natural plant and animal surfaces changing 
apparent colour depending on how they are viewed is called iridescence. Of course, 
scientists were just as curious as everyone else about why these effects occurred. 
It is usually an interference effect. Natural curiosity is always an important 
motivation for scientists, and it contributed to them adapting the theory of 
interference to explain the observations. 

 Serendipity 
The first production of thin films was unintentional (Fraunhofer), but it has led 
on to many useful applications. When an accidental or unplanned event results in 
good fortune it is called serendipity.

9.4 Resolution
Essential idea: Resolution places an absolute limit on the extent to which an 
optical or other system can separate images of objects.

■ Image resolution should not be confused with resolution of vectors into 
components.

■ The ability to resolve objects depends principally on (i) how close together 
they are, and how far away they are, (ii) the wavelength of the radiation 
involved and (iii) the properties of the image forming system. In this section 
we will consider particularly how the diffraction of waves entering the system 
affects resolution.

■ Resolution is also affected to some extent by the nature of any material 
between the objects and the detector. The resolution of binoculars, for 
example, will be affected by the clarity of the intermediate air.

■ Astronomers can get better resolution of images from space by placing 
telescopes above the Earth’s atmosphere. 

■ When we detect an image (of a point object) through an aperture, the 
pupil of an eye for example, we are actually receiving a single-slit diffraction 
pattern (see Section 9.2) with most of the energy concentrated in the 
central maximum.

■ The resolution of the system depends on the amount of diffraction that 
occurs at the aperture where the light (or other kind of wave) is received and 
detected.

■ An understanding of resolution begins with an appreciation of angular 
separation, a concept which expresses the separation of objects as an angle, 
rather than a distance. 

■ The angular separation of two objects is equal to the angle they subtend 
at the observer, as shown in Figure 9.27. This may also be called the angle 
subtended at the eye by the two objects.

angular
separation

object 1

object 2

Figure 9.27

Expert tips

The quality of the lenses, or mirrors, 
used to focus images, and the 
separation of the individual sensors 
at the place where the images are 
formed will also affect image quality 
and resolution. The sensors may be, 
for example, the cells on the retina at 
the back of an eye, or the pixels in a 
camera.

When digital images are transferred 
and displayed electronically, for 
example on the screen of a smart 
phone or television, we are often 
concerned with the display resolution 
of the device. But our concern in this 
section is the original resolution of an 
image rather than how it is displayed 
after that.

Key concept
Good resolution describes the 
ability of an image forming system 
to see objects which are close 
together as separate from each 
other.

There is good resolution if the 
angular separation between two 
objects which can be resolved is 
small.

The ability to resolve two objects 
as separate depends on how their 
diffraction patterns overlap after 
they enter the receiver.
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The resolution of simple 
monochromatic two-source systems 
■ To begin an understanding of resolution we keep things simple by considering 

the images formed from only two objects which act as point sources, both of 
which are the same distance from the detector and both of which emit 
monochromatic radiation of the same wavelength and intensity.

■ When we observe these two objects, we will receive two identical, single slit 
diffraction patterns which may overlap each other if the objects are close 
together. It is the ability to see the two central maxima as separate from each 
other that affects the resolution.

■ The three diagrams in Figure 9.28 each show the diffraction patterns from two 
identical objects. In Figure 9.28a the central maxima are well separated and the 
objects are easily resolvable. In Figure 9.28b the central maxima overlap and 
their intensities will combine, but a drop in intensity between them will be just 
detectable, so that they are just resolvable. In Figure 9.28c the central maxima are 
so close that they cannot be distinguished and the sources cannot be resolved.

a Two sources easily resolved
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b Two sources just resolved

drop in intensity b

c Two sources not resolved

Figure 9.28

■ The two patterns shown in Figure 9.28b have an angular separation of  
b

and this is taken to be an indication of the limit of resolution. Figure 9.29 
represents images of two point sources that are clearly resolved (Figure 9.29a) 
and which can just be resolved (Figure 9.29b).

a b

Figure 9.29



9.4 Resolution 165

■ Rayleigh’s criterion is not a physical law, it is just a guide derived from an 
idealized situation.

■ In other words, for light passing through a narrow slit, the criterion suggests 
that the images of two sources can be resolved if they have an angular 
separation of θ =  

b or greater. 
■ Circular apertures are much more common in imaging systems than 

rectangular slits and their resolution is poorer (for the same width), so that 
the criterion becomes: the images of two objects detected through a circular 

aperture can be resolved if they have an angular separation of p = 1.22
λλ
b

 or 
greater. 

■ The latest scientific research often involves obtaining improved images of 
objects that may be very small (atomic scale) or very large (astronomical scale). 
Rayleigh’s criterion shows us that two ways of improving resolution are by 
using larger apertures and/or smaller wavelengths. 

 Solving problems involving the Rayleigh criterion for 
light emitted by two sources diffracted at a single slit 

QUESTIONS TO CHECK UNDERSTANDING
23 A student looks at two small, identical LEDs separated by 2.35 cm. Both of 

the lights are 3.50 m from the student. 

a What is the angular separation of the lights? 

b The LEDs emit blue light of wavelength 4.3 × 10−7 m and the student’s 
pupil has a diameter of 2.8 mm. Determine the minimum angle of 
resolution of her eye. 

c Can she resolve the two lights as separate? 

d Explain how the resolution will change if the LEDs are changed so that 
they emit red light.

24 a Two similar stars are both 136 000 light years from Earth and they are 
1.2 light years apart from each other (a light year is an astronomical unit 
of distance). Estimate the theoretical minimum aperture width for an 
optical telescope that can resolve these stars. 

b Suggest why a telescope of this size may in fact be unable to detect the 
stars.

25 Make a copy of Figure 9.28b on graph paper. On the same axes, use the 
principle of superposition to sketch a graph which shows the combined 
intensity of the two patterns.

 The size of a diffracting aperture 
■ For a given wavelength, resolution can be improved by increasing the size of 

the receiving aperture of cameras, telescopes and microscopes. But only if the 
quality of the imaging system is unaffected by the increase in size.

■ Radio astronomy (see Figure 9.30) must use the relatively long (radio) 
wavelengths that are emitted from the astronomical sources that they are 
observing, but their resolution can be improved by making the receiving ‘dish’ 
with as large a diameter as possible. 

Expert tip

Astronomers can improve the resolution of radio telescopes by combining the 
signals received from an array of separate telescopes arranged in a regular 
pattern. The signals are made to interfere electronically in a way which is similar in 
principle to the way in which multiple slits improve optical resolution (Section 9.3).

Figure 9.30
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 The effect of wavelength on resolution 
■ Figure 9.31 shows an infrared picture of a cat (the different colours represent 

different temperatures). The resolution is poor because the wavelengths of 
infrared radiation are much greater than the wavelengths of visible light with 
which we would normally see cats.

■ If it is possible to do so, any resolution could be improved by using smaller 
wavelengths. An example would be the use of a blue fi lter with a microscope 
to absorb all but the shorter wavelengths in white light. (Using a limited range 
of wavelengths also improves resolution.) Electron microscopes have greater 
resolution than optical microscopes because they use electron waves which 
have very small wavelengths.

Resolvance of diffraction gratings 
■ We have seen in Section 9.3 that diffraction gratings can be used to analyse 

spectra by dispersing light from a single source into separate intensity peaks 
for different wavelengths. See Figure 9.23. The ability to detect separate 
wavelengths is another kind of resolution. 

■ Suppose that a diffraction grating is able to resolve light of two similar 
wavelengths, separated by a difference of Δλ. Resolvance is defined as 
R =  k
Dk

 (it has no units because it is a ratio). The higher the value of 

resolvance, the better the resolution.
■ Higher resolution is achieved by the light passing through a larger number of 

lines (slits), N. Resolvance also improves the higher the diffraction order, m.
■ The resolvance of a particular situation can be calculated as follows: R = mN. 
■ Comparing the last two highlighted equations, we see that Δλ = λ 

mN
, which 

 enables us to calculate the minimum wavelength difference that can be 
resolved in any particular situation. If this equation is used to check if two 
wavelengths can be resolved, the λ used in the equation may be either of the 
two (or their average).

QUESTIONS TO CHECK UNDERSTANDING
26 An optical instrument produces an angular resolution of 5.0 × 10−4 rad 

when looking at two objects in red light. Estimate the resolution that would 
be achieved by using blue light instead.

27 Greater resolution can be achieved by using image forming instruments 
with larger apertures. 

a Suggest one other advantage of using larger apertures. 

b Suggest one disadvantage of instruments with larger apertures.

28 a Explain why radio telescopes are much larger than optical telescopes. 

b Estimate the resolution of the radio telescope shown in Figure 9.30 
when it is receiving 21 cm radio waves emitted from hydrogen in a 
distant galaxy.

29 a When light is incident upon 25 slits in a diffraction grating, determine if 
wavelengths of 490 nm and 500 nm can be resolved in the fi rst, second 
and third diffraction orders. 

b If the diffraction grating had 300 lines mm−1, what was the cross-
sectional area of the incident circular light beam?

NATURE OF SCIENCE 

 Improved technology
Scientific advances are often preceded by improvements in equipment and 
instrumentation. This is particularly true in image formation technology, where 
the latest developments are producing some resolutions which are better than the 
simplified Rayleigh limit.

Figure 9.31

Key concepts
The ability of a grating to 
separate wavelengths is called its 
resolvance (or resolving power), R.

If light is incident on a greater 
number of lines/slits in a grating, the 
resolvance is improved.
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9.5 Doppler effect
Essential idea: The Doppler effect describes the phenomenon of wavelength/
frequency shift when relative motion occurs.

The Doppler effect for sound waves 
■ When our ears hear a sound we usually assume that the frequency that we 

detect (‘observe’) is the same as the frequency emitted by the source. But if 
there is relative motion between a source of sound and the detector/observer 
(an ear, for example) the two frequencies will be different. This is known as 
the Doppler effect (sometimes called the Doppler shift).

 Sketching and interpreting the Doppler effect 
when there is relative motion between source and 
observer 

■ Figure 9.32 shows circular wavefronts between a source and a detector in three 
different situations.

■ In Figure 9.32a there is no motion, so that the detector receives the same 
frequency as that emitted by the source. In Figure 9.32b the detector is moving 
directly towards a stationary source and meets more wavefronts every second 
than it would if it was not moving. This results in detecting an increased, but 
constant frequency. In Figure 9.32c a sound emitting source is moving towards 
a stationary detector. This results in the wavefronts being squashed closer 
together, and the detector receives an increased, but constant frequency.

■ Similar diagrams can be drawn to represent situations where the distance 
between a source and detector is increasing.

Common mistakes

When a source of sound travels in a straight line (almost) directly towards and 
then away from an observer, the frequency changes suddenly from a higher to 
a lower value as the source passes the observer. But if the relative motion is not 
directly between the source and detector (Figure 9.33), the frequency received 
will not be constant. Figure 9.33b is a common situation: the changing frequency 
received from a vehicle which is moving quickly past an observer. 

a b
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Figure 9.33

 Solving problems involving the change in frequency 
or wavelength observed due to the Doppler effect 
to determine the velocity of the source/observer 

■ If a source of sound is moving directly towards or away from a stationary 
observer/detector with a speed us, the detected frequency, f', can be determined 
from the following equation:

 
ff '' ff

vv
vv uuss

⎛
⎝

⎞
⎠= ±

 

 where the emitted wave frequency is f and the wave speed is v. A received 
frequency is greater when the separation is decreasing (subtract us), and less 
when the separation is increasing (add us).

Key concept
An observer receives a different 
sound frequency from that which 
was emitted if the source or 
observer is moving. The magnitude 
of the shift in frequency depends 
on how the speed of movement 
compares to the speed of sound.

a Source and detector
 both stationary

detector, Dsource, S

b Detector moving towards
 stationary source

DS

c Source moving towards
 stationary detector

D
S

Figure 9.32
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■ If an observer/detector is moving directly towards or away from a stationary 
source of sound with a speed u0, the detected frequency, f', can be determined 
from the following equation:

 ′′ ==
±±⎛⎛

⎝⎝
⎜⎜

⎞⎞

⎠⎠
⎟⎟ff ff

vv uu

vv

00

 A received frequency is greater when the separation is decreasing (add u0), and 
less when the separation is increasing (subtract u0).

QUESTIONS TO CHECK UNDERSTANDING
30 Draw a diagram to show the wavefronts between an observer and a source 

of sound which is moving directly away.

31 A train is travelling on a straight track towards a station when it emits a 
sound of frequency 220 Hz. An observer at the station records a change in 
frequency of 12 Hz from the frequency emitted. 

a What frequency sound was received at the station? 

b Assuming the speed of sound was 335 m s−1, what was the speed of the 
train when it emitted the sound? 

c If, after passing through the station the speed of the train increased to 
33 m s−1, what frequency would then be recorded at the station?

32 Sound of wavelength 90 cm is emitted from a stationary source. What 
wavelength will be received by an observer moving at 14 m s−1 towards the 
source? Assume that the speed of sound is 340 m s−1.

The Doppler effect for light waves 
■ The Doppler shift also occurs with electromagnetic waves, for example, light. 
■ For electromagnetic waves we do not use the equations highlighted above. 

Instead the change in frequency or wavelength caused by the Doppler effect 
can be calculated from: f 

f  = k k  ≈ v 
c . This is an approximation and it can only 

be used accurately if the relative speed, v, between source and detector is much 
less than the speed of electromagnetic radiation, c (which is usually true).

Describing situations where the 
Doppler effect can be utilized 
■ An important application of the Doppler effect is in the determination of 

speeds: if waves of a known speed and frequency are directed at a moving 
object, the change of frequency (or wavelength) of the reflected waves can be 
used to calculate the speed of that object. 

■ Radar is a system for detecting the location and velocity of objects (likes planes 
and cars) which are often significant distances away from the instrumentation. 
Radio (microwave) pulses are sent from a transmitting aerial which may rotate 
(see Figure 9.34), they reflect off objects and some of that reflected energy is 
received back at the aerial. The delay between emitted and received pulses can 
be used to calculate the distance to the object (assuming that the speed of the 
waves is known).

■ Doppler radar incorporates the use of the Doppler effect to determine the 
velocity of a moving object. It is also widely used to track weather systems. 

■ Because of an effect similar to the Doppler effect, the frequencies of radiation 
from distant galaxies (or stars) which is received on Earth are slightly lower 
than the frequencies emitted by the galaxies. The emitted frequencies are well 
known from the line spectra (Chapter 7) of the same elements on Earth, as 
shown in Figure 9.35.

Figure 9.34
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■ The shift of a spectrum to lower frequencies is called a red shift, it is evidence 
that the distance between galaxies is increasing: the universe is expanding.

red shift

line spectrum from element on Earth

line spectrum from element in distant galaxy

Figure 9.35

■ The Doppler effect is also used with ultrasound in hospital to measure the 
velocity of blood in arteries and veins. See Figure 9.36.

transducer

gel

v
θ

pulses

blood flow

the transducer
measures v cos θ 

artery

blood cell

Figure 9.36

QUESTIONS TO CHECK UNDERSTANDING
33 If the radar used to track aircraft has a wavelength of 20 cm, what change 

of wavelength will be detected after the microwaves have refl ected off a 
plane travelling at a speed of 260 m s−1 towards the airport? 

34 A line in the hydrogen line spectrum has a frequency of 6.563 × 1014 Hz. 
When the same spectrum is emitted from a distant galaxy and viewed on 
Earth, the frequency has changed to 6.541 × 1014 Hz. 

a What is this change of frequency commonly called? 

b Determine the speed of the galaxy. 

c In which direction is the galaxy moving? 

d Use of the equation 
∆f 
f ≈ v 

c
 involves an assumption. Is that assumption 

valid in this question?

35 The medical examination shown in Figure 9.36 involves ultrasound. 

a What is ultrasound? 

b Suggest what properties of ultrasound make it useful for this 
examination.

NATURE OF SCIENCE

 Technology
Doppler first identified the effect that bears his name more than 170 years ago. 
The effect now has many useful applications which would not have been possible 
until technological advances enabled the accurate measurement of relatively small 
changes of frequency.

Expert tip

There are three possible reasons for a 
redshift in radiation received on Earth 
and these are discussed in Options A 
and D: the expansion of space itself 
(as described above), a Doppler effect 
due to the individual motion of a 
galaxy (or star)  and a red shift arising 
from gravitational effects.



Fields

10.1 Describing fields
Essential idea: Electric charges and masses each influence the space around them 
and that influence can be represented through the concept of fields.

■ Electric forces between charges and gravitational forces between masses have 
been discussed in Chapters 5 and 6. These forces can act across free space and 
the concept of field was introduced to help explain such ‘actions at a distance’.

■ Reminder from Chapters 5 and 6: FE = kq q
r
1 2
2  and FG = Gm m

r
1 2
2  (m1m2 is 

sometimes written as Mm).
■ Reminder from Chapters 5 and 6: the strength of an electric field, or the 

strength of a gravitational field at any point can be found by determining the 
force exerted on a small (positive) test charge, or a small test mass, placed at 

that point: E = Fq, g = F
m. (A test charge or test mass is considered to have no 

effect on the field that it is determining.)

Gravitational fields
■ There are many similarities in the theories and mathematics of gravitational 

and electric fields. An understanding of one greatly helps the understanding 
of the other. We will begin with gravitational fields because they are generally 
simpler and more familiar to us.

 Representing sources of mass, lines of gravitational 
force and field patterns using an appropriate 
symbolism

■ Although they are clearly not visible, it is very helpful to be able to represent 
gravitational fields on paper or screens. There are two inter-related ways of 
doing this: using lines of equal potential (see later) and/or field lines which show 
the directions of forces:

 Field lines 
■ Field lines can never cross each other and, in any given diagram, the field 

strength is greatest where the lines are closest together.
■ It should be appreciated that field lines on paper are a two-dimensional 

representation of a three-dimensional field.
■ In this course we will restrict our discussion of gravitational field lines to (i) 

radial fields around spherical masses (like planets, moons and stars) and (ii) 
the uniform fields close to the surfaces of such masses.

■ Figure 10.1 shows the radial field lines pointing inwards towards a (theoretical) 
point mass, and the field around an equal mass, but which is larger and spherical 
(for example, a planet, moon or star). Note that the field at any place outside 
of the surface of a sphere (of uniform density) is the same as it would be for a 
point of the same mass. 

10

Key concept
Gravitational field lines show 
the direction of gravitational force 
on masses at points within the 
field.

Figure 10.1
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■ Figure 10.2 shows the uniform field that is assumed to exist above a small 
section of the surface of a large planet. The field is in fact radial, but is 
effectively uniform on this relatively small scale. 

 Gravitational potential energy 
■ When masses are moved in gravitational fields energy is transferred (work is 

done), unless the movement is perpendicular to the direction of the force (and 
field). We describe these as changes in gravitational potential energy.

■ In Chapter 2 we used the equation Δ EP = mgΔh to calculate the change in 
gravitational potential energy, ΔEP, when a mass, m, is moved up or down a 
distance Δh. But it should be stressed again that (i) this equation can only be 
used in a uniform gravitational field, g, such as that close to the Earth’s surface, 
and (ii) the use of this equation does not determine total values of gravitational 
potential energy. 

■ To move masses apart, work has to be done against the gravitational 
forces attracting them together. That is, energy must be transferred to the 
system.

■ Conversely, when gravitational forces pull masses closer together, energy will 
be transferred from gravitational potential energy to some other form (usually 
kinetic energy).

■ More generally, we consider that gravitational potential energy is stored in any 
system of masses because, at some time in the past, work was done when the 
masses moved to their present positions.

■ Before we can think about how to calculate the total gravitational potential 
energy of any system (rather than changes), we need to be clear about an 
agreed zero for gravitational energy.

Expert tip

In practice there are very small 
differences in the gravitational field 
strength on the Earth’s surface due 
to differences in distance from the 
centre of the Earth and variations 
in the density of the surrounding 
materials. 

Expert tip

On Earth it may seem that there are more obvious choices (than infinity) for a 
zero of gravitational potential energy. For example, the floor of a laboratory, 
ground level or sea level. These choices might be easier to visualize than 
infinity, but they are not locations on which everyone could agree. The centre 
of the Earth would be a fixed reference point, but is not practicable, nor 
would it be of much relevance when discussing, for example, the moons of 
Jupiter.

Figure 10.2

Key concept
Zero gravitational potential 
energy represents a system of 
masses that are so far apart (an 
infinite distance) that there are zero 
gravitational forces between them. 

Key concept
Gravitational potential energy 
of a mass at any point, EP, is the 
amount of energy needed to bring 
the mass from infinity to that 
point. All gravitational potential 
energies are negative.

■ In practice, we will nearly always be discussing the movement of relatively 
small masses to, or from, much larger masses (like the Earth or another 
planet), so that we commonly only refer to transferring energy to, or from, the 
smaller mass (rather than a system of two or more masses).

■ To move a mass from the Earth, for example, to a very long way away (infinity) 
requires that we transfer a lot of energy to it, and so increase its gravitational 
energy. Because at infinity the gravitational potential energy is zero, it means 
that all gravitational potential energies must be negative.

■ For example, when any mass moves closer to a planet it will lose 
gravitational potential energy, so that the magnitude of its potential 
energy has a larger negative value. The gravitational potential energy of 
a mass moving away from a planet increases, becoming a smaller negative 
value. See Figure 10.3, which represents the theoretical situation of a mass 
projected to infinity from the Earth’s surface.

■ But note that changes of gravitational potential energy may be positive 
(increasing separation) or negative (decreasing separation). This is equally true 
for a spacecraft, or a ball thrown in the air.

Figure 10.3

Earth
(or another planet)

maximum KE
minimum GPE

(largest negative
value)

loses KE
gains GPE

zero GPE infinity

loses GPE
gains KE
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■ For example, we might refer to a mass (of 12kg) on the surface of the Earth as 
having gravitational potential energy of, say, −7.51 × 108 J. This simply means 
that we would need to transfer +7.51 × 108 J to the mass in order to move it 
a very long way from Earth (to infinity). This ignores any factors that might 
dissipate energy (like air resistance in the atmosphere).

Common mistake

It may be thought that to move a mass to infinity requires an infinite amount of 
energy, but that is not true. Because gravitational forces follow an inverse square 
law with distance, in theory they never reduce to zero, but the forces become 
vanishingly small with the enormous distances involved in astronomy. 

QUESTIONS TO CHECK UNDERSTANDING
1 Explain why the equation ∆EP = mg∆h cannot be used to determine the 

increase in gravitational potential energy when a satellite is put into orbit 
around the Earth. 

2 A satellite in orbit around the Earth has gravitational potential energy −EP. 

a Explain why this energy is negative. 

b If the satellite is moved to a lower orbit does its gravitational potential 
energy increase or decrease? 

c How does the magnitude of the gravitational potential energy change?

3 The gravitational force on a mass of 1.0 kg on the Earth’s surface is about 
10 N. Calculate the gravitational pull from Earth on 1.0 kg which is 6.0 × 
1011 m away (approximately equivalent to the distance from Earth to the 
planet Jupiter). The Earth’s radius is 6.4 × 106 m.

 Gravitational potential 
■ We have seen that, in a particular situation, we can calculate the force 

involved when a certain mass is moved in certain gravitational field, but 
the concept of gravitational field strength (force per unit mass) enables us to 
generalize to all masses. In the same way, we can calculate the gravitational 
potential energy involved when a certain mass is moved in a gravitational field, 
but the concept of gravitational potential (gravitational potential energy per 
unit mass) enables us to generalize to all masses. 

■ As with gravitational potential energy, gravitational potentials are always 
negative (for the same reason: infinity has zero potential).

■ For example, the gravitational potential on the Earth’s surface is −6.26 × 
107 J kg−1. Using this information we can simply multiply by the mass of any 
object to determine the amount of energy that would be needed to transfer 
it to infinity. For example, a mass of 12 kg would need 7.51 × 108 J to reach 
infinity (as in the previous sub-section).

■ Because we are more likely to want to discuss movements of masses close to 
the Earth or in orbits (rather than sending a spacecraft a very great distance 
from Earth), the gravitational potential difference between two points is usually a 
more useful concept than gravitational potential. 

■ The work, W, that is done when a mass, m, moves between two places which 
have a potential difference of ΔVg is determined from W = mΔVg.

 Mapping fields using potential
■ Equipotential lines (or in three dimensions, equipotential surfaces) provide 

another way of mapping (drawing) gravitational fields.

Key concepts
Gravitational potential, Vg, at 
a point is defined as the work per 
unit mass (kg) needed to bring a 
small test mass from infinity to 
that point (unit: J kg−1).

Gravitational potential 
difference, ΔVg, is defined as work 
per unit mass (kg) needed to move 
a small test mass between the two 
points (unit: J kg−1).
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 Equipotential surfaces 
■ Contour lines on a map are examples of gravitational equipotential lines. 
■ Equipotential lines do not have direction and, like field lines, they can never 

cross each other.
■ By definition, there is no potential difference between points on the same 

equipotential line or surface, and therefore no net work is done when a mass 
moves between such points.

 Describing the connection between equipotential surfaces 
and field lines 

■ Figure 10.4 shows (in black) some equipotentials drawn around a spherical 
planet. The field lines, which are perpendicular to the equipotential lines, are 
also shown in red. Note that the numerical difference in potential between 
adjacent lines is kept constant. The spacing of the equipotential lines increases 
with distance from the mass because the field strength is decreasing, so that 
greater distances are required to transfer the same amount of energy.

 

4.0  107 J kg−1

3.0  107 J kg−1

2.0  107 J kg−1

  Figure 10.4

■ At greater distances from the planet, less energy would be needed to transfer a 
mass to infinity, so that the gravitational potential (and potential energy) have 
increased, to become smaller negative values. The field lines point from higher 
potential to lower potential.

■ Figure 10.5 shows the equipotentials around two equal, large masses relatively 
close together.

Key concept
Equipotential lines and 
equipotential surfaces connect 
places which have the same 
potential. Equipotential lines are 
always perpendicular to field lines.

M M

Figure 10.5

QUESTIONS TO CHECK UNDERSTANDING
4 Consider Figure 10.4.

a How much gravitational potential energy would need to be transferred to a satellite of mass 2000 kg in orbit around 
the planet to move it between the heights shown by the inner equipotential and the outer equipotential? 

b A satellite in a circular orbit moves along an equipotential surface. Explain why it does not need to be powered to 
follow such a path.

5 Use the information shown in Figure 10.5 to sketch the gravitational field lines around two equal masses. Mark a point 
where the field is zero (the resultant force on a mass at that point would be zero).

6 What is the gravitational potential difference between sea level and the top of Mount Everest (8848 m)? What 
assumption did you make?

7 a What value would you give to an equipotential surface passing through the room where you are reading this 
question? 

b Describe the orientation of that equipotential. 

8 The gravitational potential on the surface of a planet is −4.96 × 107 J kg−1. 

a Determine the minimum amount of work that has to be done to move a mass of 847 kg completely away from the 
gravitational attraction of the planet. 

b Suggest reasons why, in practice, much more energy will be involved in this process. 
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Electrostatic fields 
■ In this section we will discuss the electric fields around charges which are 

stationary (electrostatic fields).
■ The concepts of (gravitational) potential energy and potential discussed 

in the previous section can be applied by analogy to electrostatic fields. For 
the sake of clarity they are repeated below (as applied to electric fields), but 
electric fields are also more complicated because there are two kinds of charge 
(positive and negative) but only one kind of mass: electric forces can be 
attractive or repulsive, but gravitational forces are only attractive.

 Representing sources of charge, lines of electric 
force, and field patterns using an appropriate 
symbolism 

■ Although they are invisible, it is very helpful to be able to represent electric fields 
on paper or screens. There are two inter-related ways of doing this: using lines of 
equal potential (see later) and/or field lines which show the directions of forces:

 Field lines
■ The representation of electric fields by field lines has been covered in  

Section 5.1.

 Electric potential energy 
■ When charges are moved in electric fields energy is transferred (work is 

done), unless the movement is perpendicular to the direction of the force 
(and field). We describe these as changes in electric potential energy.

■ To move opposite charges apart, work has to be done against the electric 
forces attracting them together. That is, energy must be transferred to 
the system.

■ Conversely, when electric forces pull like charges closer together, energy will 
be transferred from electric potential energy.

■ More generally, we consider that electric potential energy is stored in any 
system of charges because, at some time in the past, work was done when the 
charges moved to their present positions.

■ If we wanted to calculate the total electric potential energy of any 
electrostatic system, we would need to be clear about an agreed zero for 
electric potential energy: a system of static charges has zero electric potential 
energy if they are so far apart (an infinite distance) that there are zero electric 
forces between them. 

■ The electric potential energy stored between opposite charges is negative 
(like gravitational potential energy) because energy would need to be 
supplied to completely separate them and produce a system with zero energy. 
The electric potential energy stored between like charges is positive.

Key concept
Electric field lines show the 
direction of electric forces on 
positive (test) charges.

Expert tip

In electrical circuits the concept of a theoretical zero of electric potential energy 
at infinity is of little practical use, and connections made to the ground establish 
the earth as a realistic zero for electric potential energy and potential.

Key concept
Electric potential energy of 
a charge at any point, EP, is the 
amount of energy needed to bring 
the charge from infinity to that 
point.

QUESTIONS TO CHECK UNDERSTANDING
9 Sketch the field lines around 

a a negatively charged sphere 

b two negatively charged spheres which are close together, but one 
sphere has twice the charge of the other.
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 Electric potential 
■ Because we are unlikely to want to discuss movements of charge to infinity, 

the electric potential difference between two points is usually a more useful 
concept than electric potential.

■ The work, W, that is done when a charge, , moves between two places which 
have a potential difference of ΔVe is determined from W = qΔVe.

■ The concept of transferring energy to, or from, charges is central to an 
understanding of electric circuits. Potential difference (p.d.) in circuits was 
discussed at length in Chapter 5, where the unit for p.d., the volt, V, was 
introduced as the widely used alternative to J C−1 (p.d. is commonly called 
voltage).

 Mapping fields using potential 
■ Equipotential lines (or in three dimensions, equipotential surfaces) provide 

another way of mapping (drawing) electrostatic fields.

 Equipotential surfaces 
■ Equipotential lines do not have direction and, like field lines, they can never 

cross each other.
■ By definition, there is no potential difference between points on the same 

equipotential line or surface, and therefore no net work is done when a charge 
moves between such points.

 Describing the connection between equipotential surfaces 
and field lines

■ Figure 10.10 shows (in black) some equipotentials drawn around charged 
spheres. The field lines, which are perpendicular to the equipotential lines, 
are also shown in red. Note that the potential difference between adjacent 
equipotential lines is constant. The spacing of the equipotential lines increases 

Key concepts
Electric potential, Ve, is the work 
per unit charge (C) that would need 
to be done to bring a small test 
positive charge from infinity to that 
point. Unit: J C−1 (or volt, V).

Electric potential difference 
between two points, ΔVe, is the work 
per unit charge (C) that would need 
to be done to move a small test 
positive charge between the two 
points. Unit: J C−1 (or volt, V).

10 Consider a hydrogen atom. The magnitude of the electric potential energy 
of the atom is about 2 × 10−18 J. 

a Is this energy positive or negative? 

b Express the energy in electronvolts. 

c How much energy would be needed to separate the electron from the 
proton? 

d After separation (ionization), what is the total electric potential energy 
of the system?

11 Two isolated point positive charges are separated by a small distance. 

a Is the electric potential energy stored in this situation positive or 
negative? 

b Explain the energy changes that will occur if the charges are able to 
move freely. 

12 In a thunder storm a large amount of negative charge builds up on the 
lower surface of a cloud. This repels some negative charge in the ground 
below, leaving it positively charged. Sketch the general shape of the electric 
field pattern between the cloud and the ground.

Common mistake

The basic and very useful concepts of potential and potential difference cause 
difficulty for many students. This is partly because of the names themselves and 
the name of the unit given to electric potential: the volt (there is no name given 
to the gravitational equivalent). It may reduce confusion by remembering that 
potential difference is simply energy/charge transfered and the volt is just another 
way of writing joules per coulomb.

Key concept
Equipotential lines and 
equipotential surfaces connect 
places which have the same 
potential. 

Equipotential lines are always 
perpendicular to field lines.
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with distance from the charges because the field strength is decreasing, so that 
greater distances are required to transfer the same amount of energy.

field line

decreasing
potential and

potential
energy

equipotential line

a

–

increasing
potential and

potential
energy

b

+

Figure 10.10

■ Figures 10.11 and 10.12 show the equipotentials and field lines around pairs of 
charges (of equal magnitude). 

 NATURE OF SCIENCE

 Paradigm shift
When the generally accepted way of thinking about a situation completely 
changes it is called a paradigm shift. Many significant advances in science have 
arisen because a problem has been interpreted in a totally new way, and old 
theories have been discarded. The rejection of widely-held beliefs and the 
introduction of such paradigm shifts requires great imagination and it may be 
difficult for some people to change their ways of thinking (the previous paradigm).

10.2 Fields at work
Essential idea: Similar approaches can be taken in analysing electrical and 
gravitational problems.

■ Figure 10.14 summarizes the four closely inter-connected concepts which 
physicists use to describe fields: force, field strength, potential energy and potential.

QUESTIONS TO CHECK UNDERSTANDING
13 a How much energy is transferred when a charge of −26 nC moves between 

places where the potentials are +1.0 kV and +1.5 kV? 

b Explain why the answer may be positive or negative.

14 Two parallel metal plates are connected to a p.d. of 10 V. The lower plate is 
connected to earth to keep it at 0 V. Sketch the shape of four equipotential lines 
between the plates and a little beyond their edges. Label their values.

15 Figure 10.13 shows the equipotentials near a charged sphere placed near an earthed 
metal plate.

a Copy the diagram and put values on the two unlabelled lines. 

b Is the sphere positively or negatively charged? 

c Add lines to represent the shape and direction of the electric field. 

+30 V

charged sphere

earthed plate

+10 V

Figure 10.13

+ –

0 V
–10 V10 V

–20 V20 V

–30 V30 V

–40 V40 V

Figure 10.12

field line

equipotential lines

+ +
300 V
250 V

200 V

300 V

Figure 10.11
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Figure 10.14

■ In Section 10.2 we will go into more detail and develop the mathematics to 
deal with the most basic type of field: the radial fields around point masses or 
point charges (or spheres). Once again, we will begin with gravitational fields.

Radial gravitational fields 

 Forces and inverse square law behaviour 
■ Consider Figure 10.15, which shows a large spherical mass, M, around which 

there is a radial gravitational field. From Section 6.1, we know that if another 
mass, m, is at point P it will experience a gravitational force FG = GMm

r2  

towards M (and M will experience an equal and opposite force). This is 

Newton’s law of gravitation and it is sometimes written in the form  

FG = Gm m
r
1 2
2 .

■ In this section we are concentrating on the effects of a strong radial 
gravitational field around a large mass, M (like a planet), on a much smaller 
mass, m (like a satellite), in such a field. 

■ A graphical representation of the inverse square variation of gravitational force 
with distance can be seen in Figure 10.16.

■ Gravitational field strength, g, also follows an inverse square law variation with 
distance around a point mass or sphere.

■ Gravitational field strength, g = F
m
G, so that at point P, g = GM

r2 . 

 Solving problems involving forces on masses in radial and 
uniform fields 

Describe
particular
arrangements

Force, F
Potential

energy, Ep 

Field strength Potential, V

Describe
points in
space

potential energy
= average force

× distance = area
under F–r graph

force = gradient
of Ep–r graph

potential = average
field strength

× distance = area under
field strength–r graph

field
strength 

field strength =
gradient of V–r graph

force
mass (or charge)

potential = potential energy
mass (or charge)=

M

P

r

Figure 10.15

QUESTIONS TO CHECK UNDERSTANDING
16 Assuming that the gravitational field on the surface of Mars is uniform 

(3.8 N kg−1), determine the gravitational force acting on a 75 kg astronaut.

17 Determine the gravitational force acting on a satellite of mass 2000 kg 
orbiting at a height of 550 km above the Earth’s surface (radius of Earth = 
6.4 ×106 m). The mass of the Earth is 5.97 × 1024 kg.

18 a The mass of the Sun is 3.33 × 105 times greater than the mass of the 
Earth. Determine the gravitational forces acting on both bodies. They 
are separated by a distance of 1.50 × 1011 m.

b Describe the effect of this force on the Earth.
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 Potential energy 
■ Gravitational potential energy is stored in a system of two or more masses. We 

will be considering situations in which a relatively small mass (like a satellite) 
is moved in the field of a much larger mass (like a planet). The smaller mass 
will be considered to have no effect on the larger mass, so that we may refer to 
the potential energy of the small mass (rather than the system).

■ We have seen in Section 10.1 that the gravitational potential energy, EP, of a 
mass at any point is the work done to bring the mass from infinity to that 
point. 

■ In Section 2.3 we learned that work done can be determined from force 
multiplied by distance but, if the force varies, an average value must be used 
in the calculation. From Section 2.3, we also know that work done can be 
determined from the area under a force–distance graph.

 Determining the potential energy of a point mass 
■ Gravitational potential energy, EP, may be determined from the (shaded) 

area under a graph like that in Figure 10.16, where r is the distance from 
the centre of the large mass to the point mass being considered. But note 
that the gravitational potential energy is always given a negative value, as 
discussed in Section 10.1.
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  Figure 10.16

■ The gravitational potential energy stored between two spherical masses, M 
and m, may be determined directly using the equation: EP = G−− mM

r
 (where r is 

the distance between their centres). There is an inverse relationship between 
gravitational potential energy and the distance from a point mass (not inverse 
square).

 Solving problems involving potential energy

QUESTIONS TO CHECK UNDERSTANDING
19 Figure 10.17 shows how the force acting on a mass of 8.5 kg varies 

with distance from a planet of radius R = 5.8 × 107 m. 

a Use the graph to estimate the gravitational potential energy of the 
mass when on the planet’s surface. 

b Determine the gravitational field strength on the planet’s surface.

20 Calculate the gravitational potential energy of a 840 kg satellite in an 
orbit of radius 3600 km around the planet Mars (mass = 6.4 × 1023 kg).
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  Figure 10.17
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 Potential 
■ We know that the gravitational potential, Vg, at a point is defined as the work per 

unit mass that would need to be done to bring a small test mass from infinity 
to that point. It can be calculated for a mass at any point in a radial field by 
dividing the gravitational potential energy by the mass, 

m: Vg = E
m

P  = GM
r

−− .

■ Figure 10.18 shows the variation of potential with distance from the surface 
of a planet of radius R. There is an inverse relationship between potential and 
distance (not inverse square).

■ Gravitational equipotentials around a spherical mass were shown in Section 
10.1, Figure 10.4.

 Combining field strengths and potentials 
■ A mass may be in two gravitational fields, for example a spacecraft travelling 

between the Earth and the Moon is in the fields of both objects. 
■ Gravitational force and field strength are vector quantities and the combined 

force or field may be determined by vector addition.
■ Gravitational potential energy and potential are scalars, and the combination 

of two energies or potentials can be determined by simple addition. As an 
example, Figure 10.20 shows the approximate shape of the variations of 
potentials (or potential energies) between the Earth and the Moon. 
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■ At the position X the magnitude of the combined potentials (or potential 
energies) is a minimum.

 Summary of the four inter-connected radial 
gravitational field concepts 
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Expert tip

A mass which has insufficient kinetic 
energy to escape from a gravitational 
field may be described as being in 
a gravitational potential well, such 
as shown in Figure 10.19. This is a 
two-dimensional representation of 
the graph shown in Figure 10.18. 
More massive planets and stars are 
represented by deeper wells, from 
which it is more difficult for other 
masses to escape.

Figure 10.19
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 Potential difference 
■ This has already been discussed in Section 10.1. Reminder: the energy (work), 

W, required to move a mass, m, between points which have a potential 
difference of ΔVg can be determined from W = mΔVg.

 Potential gradient 
■ The gradient of a potential–distance graph, like that shown in Figure 10.18, is 

ΔVg

Δr . It is called the gravitational potential gradient.

■ In Figure 10.20 the combined potential gradient at X is zero, indicating that 
the resultant field and force at that point are zero. The gravitational field 
strengths of the Moon and the Earth are equal and opposite.

Key concept
Gravitational potential 
gradient is equal to the 
gravitational field strength, g at 
that point: g = −ΔVg

Δr
.

QUESTIONS TO CHECK UNDERSTANDING
21 a Determine the potential at a height of 1000 km above the surface of the Moon. (Mass of Moon is 7.3 × 1022 kg; 

radius of Moon is 1700 km.) 

b What important assumption did you make? 

c How much energy would need to be transferred to a 50 kg mass to raise it from the Moon’s surface to a height of 
1000 km?

22 a Plot a graph of the variation of gravitational potential around the Earth with distance from the centre (graph to 
include distances up to 2.0 × 107 m). (Mass of Earth is 6.0 × 1024 kg; radius of Earth is 6400 km.) 

b Use your graph to determine the field strength at a height of 1.0 × 107 m above the surface. 

c Compare your answer to the value calculated using g = GM
r 2

.

23 Figure 10.22 shows some equipotential lines around the Earth. The potential at the Earth’s surface is −63 MJ kg−1. 

a What is the potential difference when moving from the inner line to the outer line? 

b How much gravitational energy must be given to a 500 kg object to raise it 
from the Earth’s surface to the height of the second equipotential? 

c Explain why no net energy is transferred if a satellite moves from A to B.

24 Determine the distance from the centre of the Earth to a point where the 
combined potential of the Earth and the Sun is at its lowest (gravitational forces 
are equal and opposite). Sun–Earth distance is 1.5 × 1011 m, mass of Sun = 2.0 × 
1030 kg, mass of Earth is 6.0 × 1024 kg.

25 a Calculate the combined gravitational potential of a point which is 2.8 × 
108 m from Earth and 3.7 × 107 m from the Moon. 

b How much energy would be transferred to move a 2400 kg spacecraft from 
that point to the Moon’s surface?

AB

50 MJ kg−1

40 MJ kg−1

30 MJ kg−1

Figure 10.22

Spacecraft in radial gravitational fields 
■ To raise any object away from a planet’s surface it has to gain gravitational 

potential energy. An object may be given kinetic energy (a projectile), or it 
may be continually powered, like a plane or a rocket. 

■ In Chapter 2 we saw that we could calculate the maximum theoretical height, 
h, reached by a projectile fired vertically from mgh = 1

2
mv2, but that equation 

can only be used if the field is uniform (g is constant). In the radial field 
around a planet we need to use the equation for gravitational potential energy 
in a radial field.

■ Consider Figure 10.23. If a mass, m, at point A is to be projected vertically 
from the surface of a planet to point B, it needs to be given kinetic energy 
equal to the difference in gravitational potential energy between A and B:

 1
2
mv2 = 

Br
GMm−( ( − − AGMm

r( (
■ Alternatively, we can divide through by m, leading to 12v2 = potential 

difference, ΔVg.

B

rB

r

A

rA

Figure 10.23
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■ Of course, this equation assumes that there is no significant air resistance.
■ Now we will consider the possibility of launching a mass into space with 

sufficient kinetic energy that it could completely escape a planet’s gravitational 
field and travel to ‘infinity’.

 Escape speed 
■ Escape speed does not depend on the magnitude of the mass of the object, or 

the direction of launch. However, if the planet has an atmosphere (like the 
Earth), energy would be dissipated because of friction and a much higher speed 
would be needed (if it was even possible). 

■ The escape speed, vesc, from a planet (or moon, or star) of mass M and radius 
r, can be determined by equating the necessary initial kinetic energy to 
the magnitude of the change in gravitational potential energy between the 

planet’s surface and infinity: 1
2
mvesc

2 = GMm
r

− 0, which leads to vesc = GM
r

.

 Orbital motion and orbital speed 
■ A satellite is the word that we use to describe a moon, planet or vehicle which 

orbits a much larger mass. Most commonly, the word satellite is used to describe 
artificial satellites that have been placed in orbit around the Earth.

■ In Chapter 6 we discussed satellite orbits as examples of circular motion. 
Equating gravitational force with centripetal force showed that the orbital 
speed required for any mass in a circular orbit of radius r around a mass M was 

given by vorbit = GM
r

.

■ Only circular orbits are considered in this course. Combining the last equation 

with v = 
r

T
2π

 leads to an equation: T
r GM

4π2

3

2

=  which directly links a satellite’s 

time period, T, to its distance from the centre of the mass, M, which it is 
orbiting. (This equation need not be remembered.)

■ The speed and time period of a satellite depends only on the radius of the orbit 
and the magnitude of the mass being orbited, but not the mass of the satellite.

■ Launching a satellite requires transferring to it the necessary gravitational 
potential energy to get it to the required height, plus the necessary kinetic 
energy so that it has the right speed for an orbit at that height.

 Solving problems involving the speed required for an 
object to go into orbit around a planet and for an 
object to escape the gravitational field of a planet 

Key concepts
Escape speed is the theoretical 
minimum speed required for any 
mass to escape the gravitational 
field of a planet (or moon, or star). 
It depends on the mass of the 
planet and the distance of the 
mass from its centre.

The orbital speed a satellite needs 
in order to maintain a circular path 
also depends only on its orbital 
radius and the mass of the planet.

Expert tip

The escape speed from the Earth’s 
surface is 11.2 km s−1. But remember 
that this is a theoretical value 
because energy and speed would be 
dissipated by air resistance. An object 
on the Earth’s surface already has 
kinetic energy because it is moving 
with the rotation of the Earth’s 
surface. This speed is about 460 m s−1 
on the equator, but it decreases with 
movement north or south because 
such positions have a smaller radius 
from the Earth’s axis. 

QUESTIONS TO CHECK UNDERSTANDING
26 a Confirm that the escape speed from the Earth’s surface is 11.2 km s−1. 

b Explain why all masses have the same escape speed. 

c Determine the escape speed from a planet which had twice the radius of Earth, but the same density.

27 The escape speed of the Moon is 2.4 km s−1. 

a If the mass of the Moon is 7.3 × 1022 kg, use its escape speed to determine its radius. 

b Explain why the escape speed from the Moon is much lower than from the Earth. 

28 a Calculate the orbital speed needed for a satellite to orbit the Earth at a height of 200 km. 

b What is the time period of this orbit?

29 Mars has a radius of 3390 km and a mass of 6.4 × 1023 kg. It has a day which is 40 minutes longer than Earth’s. 
Determine the radius of the orbit of a satellite around Mars which always remains above the same place on the planet’s 
surface. 

30 The radius of the Earth is 6.4 × 106 m. Determine the minimum theoretical speed which a mass would need if, when 
projected vertically upwards it was to reach a height of 500 km. Assume there was no air resistance.
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 Orbital energy 
■ A satellite in orbit has both kinetic energy, EK, and gravitational potential 

energy, EP. 

■ Since EK =1
2
mvorbit

2 and vorbit = GM
r

, EK = 12 GMm
r

■ Reminder: EP = GMm
r

− .

■ The total orbital energy of a satellite in circular orbit, ET = EK + EP = − 1
2

 
GMm

r
■ The potential energy and the total energy must always be negative (because 

infinity is chosen to have zero potential energy), but the kinetic energy is 
always positive. The magnitude of the kinetic energy of an orbiting satellite is 
equal to the magnitude of its total energy. See Figure 10.24.
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■ Satellites which are in relatively low orbits around the Earth may experience 
some slight air resistance. If an unpowered satellite could stay at the same 
height this would result in a reduction of speed, but (as it starts to lose speed) 
the satellite moves closer to the Earth, to a smaller radius, r, because its total 

energy ( 1
2

GMm
r

) has reduced (to a larger negative value) due to energy 

dissipation. The orbital speed at a lower height is greater than before. (This 
will increase air resistance further.) 

 Solving problems involving orbital energy of masses 
in circular orbital motion 

Expert tips

There are many factors affecting the 
choice of height for a satellite around 
the Earth. All satellites need to be 
above the Earth’s atmosphere to 
avoid air resistance, and lowest orbits 
are at a height of about 200 km. We 
have seen that the radius affects 
the time period for each orbit and 
the quickest (lowest) take about 90 
minutes for each orbit. A satellite in 
a low orbit is ideal for observing the 
Earth’s surface and it will pass over 
the polar regions and large parts of 
the world every day. 

Satellite orbits can be synchronized 
with the Earth’s rotation by placing 
them at the right height (about 
30 000 km) so that they have a period 
of 24 hours. This makes them useful 
for communications, especially if they 
remain above the same place on the 
Earth’s surface in a geostationary 
orbit. To do this they must orbit in 
the plane of the equator.

QUESTIONS TO CHECK UNDERSTANDING
31 A 250 kg satellite is orbiting the Earth with a radius of 6.68 × 106 m. 

a Calculate: i its orbital speed, ii its kinetic energy. 

b Write down: i the gravitational potential energy of the satellite, ii the 
total energy of the satellite.

32 A satellite in orbit around the Earth is moved to a higher orbit. Its mass is 
unchanged. Compare the orbital speeds, kinetic energies, potential energies 
and total energies of the satellite in the two orbits.

33 Titan is the largest moon of Saturn. It has a mass of 1.3 × 1023 kg, its 
average distance from the centre of Saturn is 1.2 × 106 km and its orbital 
period is 15.9 days. 

a Calculate the orbital speed of Titan. 

b Hence determine the kinetic energy of this moon. 

c What is the gravitational potential energy of Titan?
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Radial electrostatic fields 
■ The gravitational field concepts discussed in the previous section can be 

applied by analogy to electrostatic fields. For the sake of clarity they are 
repeated below (as applied to electrostatic fields), but electrostatic fields are 
also more complicated because there are two kinds of charge (positive and 
negative).

 Forces and inverse square law behaviour 
■ Consider Figure 10.25, which shows a sphere with charge −q1, around which 

there is a radial electric field. The electric field lines are pointing inwards 
towards the negative charge. From Section 5.1, we know that if another 

small charge, +q2, is at point P it will experience an electric force FE = 
kq q

r
1 2
2  

towards q1 (and q1 will experience an equal and opposite force). The negative 
sign produced in the value of FE indicates an attractive force. If the second 
charge was negative, the magnitude of the forces would be the same but in the 
opposite directions (repulsion).

■ Similar comments can be applied to the forces on charges around a positively 
charged sphere. 

■ A graphical representation of the inverse square variation of electric force with 
distance can be seen in Figure 10.26 below. 

■ Electric field strength, E, also follows an inverse square law variation with 
distance around a point charge, or charged sphere.

■ Electric field strength, E = F
q
E , so that at point P, E = kq

r
1

2
. 

 Solving problems involving forces on charges in radial fields 

–q1

P

r

Figure 10.25

QUESTIONS TO CHECK UNDERSTANDING
34 Make a copy of Figure 10.25, but amend it so that the charge at the centre 

is +q1. Then re-write the accompanying paragraph to describe the forces 
involved when another charge of +q2 is placed at P.

35 What is the separation of two point charges each of 3.2 nC if the force 
between them is 9.2 × 10−6 N?

36 A charge of +1.2 nC is placed midway between fixed point charges of 
−23 nC and −34 nC which are 25 cm apart. Determine the resultant force on 
the 1.2 nC charge.

 Potential energy 
■ Electric potential energy is stored in a system of two or more separate 

charges. We will often be considering situations in which a relatively small 
charge is moved in the field of a much larger fixed charge, and under such 
circumstances the smaller charge will be considered to have no effect on the 
larger charge, so that we may refer to the potential energy of the small charge 
(rather than the system).

■ We have seen in Section 10.1 that the electric potential energy, EP, of a charge 
at any point is the work done to bring that charge from infinity to that point. 

■ If the force is attractive (between opposite signs) then the electric potential 
energy will be negative because infinity is taken to be the zero of potential 
energy. If the force is repulsive (similar signs) the energy will be positive.

■ In Section 2.3 we learned that work done can be determined from force 
multiplied by distance but, if the force varies, an average value must be used 
in the calculation. From Section 2.3, we also know that work done can be 
determined from the area under a force–distance graph.
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 Determining the potential energy of a point charge
■ Electric potential energy, EP, may be determined from the (shaded) area under 

a graph like that in Figure 10.26, where r is the distance from the fixed charge 
to the point charge being considered. 
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  Figure 10.26  

■ The electric potential energy stored between two charges (points or spheres), q1 
and q2, may be determined directly using the equation: EP = kq q

r
1 2 (where r is 

the distance between their centres). There is an inverse relationship between 
gravitational potential energy and the distance from a point mass (not inverse 
square).

 Solving problems involving potential energy 

QUESTIONS TO CHECK UNDERSTANDING
37 a Calculate the electric potential energy of a hydrogen atom of radius  

5.3 × 10−10 m.

b Explain why the energy is considered to be negative.

38 A small charge of +4 nC is moved from a long way away to a point close to 
a fixed, positively charged sphere (100 nC).

a Determine values for the forces on the charges and thereby draw a 
force–distance graph which will enable you to determine the change in 
electric potential energy when the charge moved from 20 cm to 10 cm 
from the centre of the sphere.

b Is this energy positive or negative? Explain your answer.

c Use the equation to calculate the potential energy of the small charge 
when it is 10 cm from the sphere.

 Potential 
■ We know that the electric potential, Ve, at a point is defined as the work per 

unit charge that would need to be done to bring a small test positive charge 
from infinity to that point. It can be calculated for a charge at any point by 

dividing the electric potential energy by the charge, q: Ve = 
E
q
P  = 

kq
r

.
■ Figure 10.27 shows, on the same axes, the variation of potential with distance 

around a positively charged sphere (or point) and also around a negatively 
charged sphere (or point) which has charge of the same magnitude. There is 
an inverse relationship between potential and distance (not inverse square).

■ Electric equipotentials around points (or charges on spheres) were shown in 
Section 10.1, Figure 10.10.
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Expert tip

Potential wells (see Figure 10.19) provide a useful visualization for electric fields as well 
as gravitational fields. For example, we may consider that an electron in a hydrogen 
atom moves around in the potential well produced by the proton in the nucleus. 
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 Combining fields and potentials 
■ A charge may be in two electric fi elds, such as provided by the two charged 

spheres shown in Figure 10.28. A positive charge placed at point P will 
experience forces from both spheres, as shown.

■ Electric force and field strength are vector quantities and the combined force 
or field may be determined by vector addition.

■ Electric potential energy and potential are scalars, and the combination of two 
energies or potentials can be determined by simple addition. 

 Determining the potential inside a charged sphere 
■ If a hollow spherical conductor is charged, the charges will move to the outer 

surface because their mutual repulsion pushed them as far apart as possible. 
See Figure 10.29 which shows a negatively charged sphere.

■ There is zero electric fi eld inside a charged sphere, which means that the 
potential gradient is also zero, so that the potential is constant, and equal to 
that on the conductor. See Figure 10.30.

■ Similar comments apply to other shaped conductors with enclosed spaces 
(like Faraday cages).

electric potentialelectric field strength

rr

Figure 10.30

 Summary of the four inter-connected radial electric 
field concepts 

Force Potential energy
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kq1q2

r

Field
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Figure 10.31

 Potential difference 
■ This has already been discussed in Section 10.1. Reminder: the energy (work), 

W, required to move a charge, q, between points which have a potential 
difference of ΔVe can be determined from W = qΔVe.

 Potential gradient 
■ The gradients of potential–distance graphs, like those shown in Figure 10.27, 

are ΔVe

Δr
. These are called electric potential gradients and they are important 

because the electric potential gradient at any point is equal to the electric fi eld 

strength, E at that point: E = V
r
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Key concept
Electric potential gradient is 
equal to the electric field strength, 
E at that point: E = –ΔVe

Δr . 
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Uniform electrostatic fields 
■ The uniform electric field between parallel charged metal plates was 

introduced in Section 10.1. We will now look at this situation in more detail. 
Consider Figure 10.33, which shows a charge q in the uniform electric field 
created by a potential difference of ΔVe across plates separated by a distance r.

■ If the charge moves from one plate to the other, the work done, W = Fr (force 
× distance), and from the definition of p.d., we also know that W = qΔVe.

■ Therefore, Fq  = ΔVe

r .

■ Electric field strength, E, is defined as Fq , so that we now see that E = 
ΔVe

r  
(unit: V m−1) is an alternative, and much more convenient, way of measuring a 
uniform electric field.

■ This is just a particular example of the more generalised interpretation of field 

strength as potential gradient that we have met before E
V
r

e= −Δ
Δ

⎛
⎝⎜

⎞
⎠⎟
.

Motion of charged particle 
beams in uniform fields 
■ Forces on atomic particles in gravitational fields are so small that they can 

be ignored. But electric and magnetic forces can be strong enough to affect 
the motion of charged particles. The deflection of particle beams in fields 
of known strength can be used to determine properties of the particles. The 
beams of charged particles that could be discussed in this course are electrons 
(including beta particles), protons and alpha particles.

■ Figure 10.34 shows the design of an electron deflection tube which can used 
to investigate the deflection of an electron beam in vertical and horizontal 

QUESTIONS TO CHECK UNDERSTANDING
39 Calculate the electric potential at a distance of 10.0 cm from the surface of 

a sphere of radius 5.0 cm if it has a charge of −4.5 pC.

40 Consider Figure 10.28. If the charge on A is 12 nC and the charge on B is 
−2.4 nC, determine the potential at point P, which is 15 cm from the centre 
of A and 10 cm from the centre of B.

41 Figure 10.32 shows the variation of potential with distance from a point 
charge. 

a Is the charge positive or negative? 

b Use the graph to estimate the strength of the electric field at a distance 
of 15 cm from the charge. 
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42 Consider Figure 10.12.

a What is the potential difference between the +40 V and −40 V 
equipotentials?

b Estimate how much energy would be transferred when moving a 2 nC 
charge from the surface of one sphere to the surface of the other.

c Discuss whether the energy is positive or negative.

0 V

+ Ve

r q

F

Figure 10.33
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uniform electric fields. Electrons are emitted from the hot cathode and 
accelerated by the positive potential on the anode. They move at high speed 
across the evacuated tube and hit the fluorescent screen at the end of the tube. 

■ Kinetic energy gained by electron, EK = 1
2
mv2 = charge × p.d. = eV
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  Figure 10.34

■ A p.d. applied across the X-plates and/or the Y-plates can deflect the electron 
beam. An electron initially moving parallel to the plates will experience a 
force perpendicular to the plates, as described in the previous sub-section. 
The electron will accelerate towards the positive plate, while at the same time 
continuing with a constant speed along the tube. This results in a parabolic 
trajectory.

■ The motion of charged particles across uniform magnetic fields has been briefly 
described in Section 5.4. If charges move perpendicularly to the field, they 
experience a force which is always perpendicular to their motion, and this 
provides the centripetal force needed for them to move in the arc of a circle.

■ Equating the expression for centripetal force (Section 6.1) to the force 
on a charge moving perpendicular to a magnetic field (Section 5.4) we 
get mv2

r  = qvB, which leads to an expression for the radius, r of the circular 

path of a charge Q moving across a magnetic field of strength B: r = 
mv2

qB . 
This is a useful equation, but it need not be remembered.

■ Figure 10.35 shows the circular paths of positive and negative charges of 
different speeds passing across magnetic fields.
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Figure 10.35
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 Solving problems involving forces on charges in 
uniform fields and orbital energy of charges in 
circular orbital motion 

Expert tip

Strong magnetic fields provide the only means for making charged particles move 
in circular paths. Applications of this theory include mass spectrometers for the 
identification of nuclides and particle accelerators.

QUESTIONS TO CHECK UNDERSTANDING
43 A p.d. of 1000 V is connected across parallel metal plates which have a separation of 3.2 cm. 

a What is the electric field strength between the centres of the plates? 

b Estimate the field strength at the edge of the plates. 

c What force would be experienced by a +1.0 nC charge midway between the centres of the plates? 

d What affect does this force have on the charge? 

e How does the force change if the charge moves closer to one of the plates?

44 A 20 cm long, straight cylindrically shaped metallic conductor has a p.d. of 12.8 mV across its ends. 

a What is the value of the electric field strength along the conductor? 

b Determine the magnitude of the force acting on free electrons in the metal. 

c Determine the magnitude of the acceleration produced.

45 An electron beam was directed horizontally and perpendicularly across the uniform electric field between parallel 
plates. The plates had a p.d. of 4000 V across them and they were separated by 3.4 cm. 

a Draw a sketch of this arrangement. 

b The beam was produced when electrons were accelerated from rest by a p.d. of 5000 V. Determine the kinetic 
energy gained by an electron in: i electronvolts, ii joules. 

c Calculate the maximum speed of the electrons in the beam. 

d If the plates were 6.0 cm long, what was the time taken for an electron to pass between them?

e Calculate the magnitude of the electric field between the plates.

f Determine the force on each electron.

g Calculate the acceleration of the electrons. 

h Determine the deflection of the beam as it passed between the plates.

46 a An alpha particle moving with a speed of 6.1 × 106 m s−1 enters a perpendicular magnetic field of strength 0.46 T in a 
vacuum. Determine the radius of its path. 

b What would be the radius of the path of an alpha particle travelling at one tenth of the speed which passed through 
the same field? 

c What is the energy of the alpha particle (in MeV)? 

d How would the path of the alpha particle be affected if air at low pressure was introduced into the experiment? 
(Mass of alpha particle = 6.64 × 10−27 kg)

47 a Sketch an arc of the circular path followed by a negative charge, −q, and mass m, moving perpendicularly across a 
magnetic field strength B. 

b Add a sketch of the path followed by the same charge passing across a field of strength 2B. 

c Add a third sketch showing the path followed by the path of a charge −q and mass 2m passing through a field of 
strength B.

 NATURE OF SCIENCE

 Communications of scientific explanations
The field concept is used by scientists to help develop models to explain 
phenomena as wide-ranging as the motion of distant galaxies and the behaviour 
of subatomic particles. Many of the general public have a natural curiosity about 
scientific theories on subjects such as these, but understanding them can be 
very difficult for non-scientists in an increasingly complex world. Scientists, and 
the organizations they work for, have a responsibility to inform the public, but 
this requires considerable communication skills in a world that usually requires 
information in short and easily understood news items. 



Electromagnetic induction

11.1 Electromagnetic induction
Essential idea: the majority of electricity generated throughout the world is 
generated by machines that were designed to operate using the principles of 
electromagnetic induction.

Electromotive force (emf) 
■ The concept of emf was introduced in Chapter 5. We usually use this term to 

describe the electric potential difference produced by a process or device which 
can convert some other form of energy into electrical energy. (More precisely, 
emf is the total energy transferred per coulomb by the process.)

Describing the production of 
an induced emf by a changing 
magnetic flux and within a 
uniform magnetic field 
■ (The term magnetic flux is explained later.) 
■ Electromagnetic induction can be demonstrated by moving a permanent 

magnet near a stationary conductor, or, conversely, by moving a conductor 
through a stationary magnetic field (see Figure 11.1). If the conductor and the 
magnetic field are both moving with the same velocity, no emf will be induced: 
relative motion between them is needed. 

sensitive
galvanometer

magnet

flexible
wire

move wire in
this direction

magnetic field lines

S

Figure 11.1

■ If a conductor is in a complete circuit, an induced emf will result in an induced 
current. 

■ The greatest emf is induced when the motion of the conductor is perpendicular 
to the direction of the magnetic field (or vice versa). No emf is induced if the 
conductor is moved parallel to the field.

■ The magnitude of the induced emf increases with the speed of relative motion, 
the strength of the magnetic field and the number of turns in the circuit. 

Key concepts
Electromagnetic induction is 
the process by which an emf is 
induced (made to occur) when a 
conductor experiences a changing 
magnetic field.

Electromagnetic induction may 
involve a moving magnet, a 
moving conductor or the magnetic 
field around a changing current.

11

Expert tip

If a number, N, of separate wires 
were moved through the field in 
Figure 11.1, the same emf, ε, would 
be induced across each of them. If 
instead they are connected end-
to-end with the connecting leads 
outside of the field, then the emfs 
will add up to induce a total emf 
of Nε. We would describe this 
arrangement as a coil of N turns.
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■ Using coils with large numbers of turns is the usual way of increasing 
the magnitude of induced emfs. Figure 11.2 shows a demonstration of 
electromagnetic induction as a permanent magnet is moved into, or out of, 
a coil. The direction of the induced emf and current depend on which way 
the magnet is moving. Reversing the polarity of the magnet will reverse the 
direction of the induced emf and current.

switch
closed

magnet moving
into coil

N S

Figure 11.2

■ The rotation of coils in magnetic fields is the means by which most of the 
world’s electrical energy is generated. See Section 11.2.

■ To understand electromagnetic induction, consider the simplest possible 
arrangement: Figure 11.3 shows a conductor moving at a speed v (towards 
the bottom of the page), perpendicularly across a uniform magnetic field of 
strength B. The electrons within the conductor are charges moving across a 
magnetic field and will therefore experience magnetic forces, as explained in 
Section 5.4. The direction of this force can be determined using the left-hand 
rule, remembering that the direction of conventional current is opposite to the 
direction of electron movement.

 The force on one electron is shown in the figure. The movement of electrons 
results in one side of the conductor gaining negative charge, and the other 
side losing negative charge and so becoming positive. In this way an emf is 
produced across the conductor.

■ The movement of charge does not continue indefinitely because further 
electrons moving towards the negatively charged side of the conductor are 
repelled (and attracted to the other end). 

■ We can use this fact to determine an equation for the induced emf. At 
equilibrium, the electric repulsive force = magnetic force: using equations from 
Chapter 5, Eq = qvB (in this arrangement sin θ = 1). This leads to E = Bv.

■ We know from Chapter 10 that a uniform electric field, E = ΔV
Δr  or, in this 

arrangement, E = εl , where l is the length of conductor in the magnetic field 
and ε is the induced emf. Hence the equation for the induced emf when a 
straight conductor moves perpendicularly across a magnetic field becomes ε = Bvl.

■ If the circuit has N turns, the same emf is induced across each turn, so that 
the equation for the total emf induced becomes ε = BvlN.

 Electromagnetic induction without physical motion 
■ The necessary requirement for electromagnetic induction is that there is 

a changing magnetic field passing through a conductor. This can occur 
without physical motion if the current in one circuit (and the magnetic field 
around it) is changing, and the changing magnetic field then passes through 
another circuit.

■ Figure 11.4 shows two separate circuits. When the switch in circuit A is 
open there are no currents and no magnetic fields. But at the moment when 
the current in circuit A is switched on, the magnetic field around it passes 
though circuit B, inducing an emf and a current through the meter. There is 
no induction when the current and field are constant. The induced emf and 
current are induced in the opposite direction at the moment that the switch is 
turned off. The induced emf can be made much larger by using coils of wire.

■ If the battery is replaced with an alternating current supply, electromagnetic 
induction will be continuous, producing an alternating induced emf. This 
effect is used in transformers; see Section 11.2.

Key concept
Electromagnetic induction occurs 
because free electrons within the 
conductor experience magnetic 
forces (see Section 5.4). This 
results in some charge separation 
in the conductor.

conductor

magnetic force on electron

magnetic field into paper

conductor
speed v

–

l

Figure 11.3

Expert tip

In principle, everywhere that 
alternating currents flow, oscillating 
electromagnetic fields will radiate 
away from the circuits, with the 
ability to induce emfs in any 
conductors through which they pass. 
Wireless communication is just one 
application of this phenomenon.

circuit Bcircuit A

close
switch

Figure 11.4
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QUESTIONS TO CHECK UNDERSTANDING 
1 Describe how the wire shown in Figure 11.1 could be moved without  

inducing an emf. 

2 Why are conductors (rather than insulators) needed in order to 
produce electromagnetic induction?

3 Consider Figure 11.2. List three ways in which the induced emf could 
be increased in this kind of experiment.

4 Figure 11.5 shows a permanent magnet being dropped through 
a coil of wire connected so that the emf induced can be recorded 
electronically and a graph drawn. 

a Explain why a data logger is needed for this experiment. 

b Sketch a graph to show how the induced emf changes as the 
magnet passes through the coil.

5 A conductor of length 50 cm moved horizontally across a vertical  
magnetic field of strength 45 mT with a speed of 32 cm s−1. What  
emf was induced across the conductor?

6 Figure 11.6 shows an arrangement of two separate circuits containing  
coils of wire with the same iron core. The apparatus is to be used to  
demonstrate electromagnetic induction. 

a Explain why an iron core is being used. 

b Explain how turning on a direct current in circuit A results in a 
momentary deflection on the meter connected to circuit B. 

c Describe the emf induced in circuit B if an alternating voltage is 
applied to circuit A.

meter for
circuit B

iron core

B

A
input to
circuit A

Figure 11.6

Magnetic flux and magnetic flux linkage 
■ The very wide variety of circumstances in which emfs can be induced can be 

confusing, but they are better understood by first understanding the concept of 
magnetic flux, Φ.

■ If a magnetic field is perpendicular to an area, magnetic flux is determined by 
multiplying the magnetic field strength by the area, Φ = BA.

■ Figure 11.7 shows a more general situation, in which the flux is at an angle θ to 
a normal to the surface 

area, A

normal to surface

B

θ θ θ θ

Figure 11.7 

■ In unscientific terms, magnetic flux may be considered as a measure of the 
total magnetic field passing through an area. An understanding of magnetic 
flux may be gained by counting magnetic field lines. Consider Figure 11.8.

A

C

E

B

D

F

there is more flux through B than A 
because the field strength is greater 
over the same area

there is more flux through C than D
because the area is greater for the 
same field strength

there is more flux through E than F 
because the field is perpendicular to
the area

Figure 11.8

Key concepts
The magnetic flux, Φ, through 
an area is defined as the product 
of the component of the magnetic 
field strength perpendicular to that 
area (B cos θ) and the area A.

Φ = BA cos θ

magnetic flux linkage = NΦ 

Expert tip

An analogy with radiation falling on 
a solar panel may also be helpful: 
combining intensity of radiation (solar 
flux density), angle of incidence and 
the area of the panel can lead to the 
determination of the total energy 
(flux) incident on the panel.

R
to 

data logger

magnet

coil

S

N

Figure 11.5
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■ The units of magnetic flux are webers, Wb. 1 Wb = 1 T × 1 m2.
■ The size of an induced emf increases in proportion to the number of turns in 

a circuit. For this reason the concept of magnetic flux linkage is introduced. 
Magnetic flux linkage is defined as the product of the magnetic flux and the 
number of turns, N, in the circuit: magnetic flux linkage = NΦ. Magnetic flux 
linkage has no symbol and its units are the same as for magnetic flux (Wb).

 Solving problems involving magnetic flux, magnetic 
flux linkage 

QUESTIONS TO CHECK UNDERSTANDING
7 What is the magnetic flux through a square coil with sides of 5.0 cm when it 

is placed perpendicular to a magnetic field of strength 35 mT? 

8 Figure 11.9 shows a circular coil of radius 4.2 cm (seen from the side) in a 
uniform magnetic field. 

a If the magnetic flux through the coil is 5.6 × 10−6 Wb, what is the 
strength of the magnetic field? 

b If there are 480 turns on the coil, what is the flux linkage through it?

B

coil

50°

Figure 11.9

Faraday’s law of induction 
■ Faraday realized that all examples of electromagnetic induction can be 

described by one ‘simple’ equation.
■ The negative sign in this equation is explained below (see Lenz’s law).

 Remembering that Φ = BA cos θ, we can re-write the equation in two 
alternative ways: 

 = −NA cos θ × (
Bt ) for circumstances when there is a changing magnetic 

field passing through a fixed arrangement (constant A)

 = −NB cos θ × (
At ) for circumstances when there is movement of a 

conductor across a fixed magnetic field. For example, if a conductor of 
length l moves at speed v perpendicularly across a field of strength B, 
then cos θ = 1 and (

ΔA
Δt ) = vl, so that the equation reduces to =

−BvlN, which is the same as we met earlier in this section (but now  
with a negative sign included). 

 Lenz’s law
■ Lenz’s Law is represented mathematically by the inclusion of the negative sign 

in the equation for Faraday’s law of induction (above). 

 Explaining Lenz’s law through the conservation of 
energy 

■ Any induced current must have a magnetic field around it (as discussed in 
Section 5.4). The direction of that magnetic field is very important. As we 
shall explain, the direction of the induced field is opposite to the original field 
involved in the electromagnetic induction.

■ Any induced current will involve energy and we need to be able to explain 
where that energy has come from. It must have been transferred to the 
induced current from somewhere else. 

Key concept
Magnetic field strength, B, can 
be interpreted as magnetic flux 
per unit area and, as such, can 
be described as magnetic flux 
density

Key Concept
Faraday’s law of induction: 
the magnitude of any induced emf 
is equal to the rate of change of 
magnetic flux linkage.

ε  N
t

ΦΔ
Δ

Key Concept
Lenz’s law: An induced emf 
always opposes the change of 
magnetic flux which produced it.

This is because any induced 
current has had energy transferred 
to it, and this energy must have 
been taken from the original 
energy in the system.
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 The simplest induction example is of a conductor moving into or out 
of a magnetic field (see Figure 11.1). The energy of the induced current 
is transferred to it from the kinetic energy of the conductor, which will 
experience a retarding force that makes it slow down. The energy lost by 
the conductor is transferred to the induced current. If the conductor is kept 
moving at a constant speed, then the energy will be transferred from the work 
done against the retarding force.

 The conductor experiences a retarding force because the current is in such 
a direction that the magnetic field around it is in opposition to the original 
field provided by the magnet. In other words, the induced current direction is 
always such that it sets up a magnetic field opposing motion.

■ Figure 11.2 provides another example: when the magnet is pushed into the 
coil it induces a current which makes the coil behave as a magnet (see Section 
5.4). In this case, the current flows around the coil in a direction such that the 
end of the coil closest to the permanent magnet is a north pole. The magnet 
is therefore repelled and slowed down (unless it is pushed). The magnet loses 
(kinetic) energy, which is transferred to the current. If the magnet is moved 
away from the coil, the induced current will oppose its motion by flowing in 
the opposite direction, which makes the end of the coil a south pole. 

 Solving problems involving Faraday’s law 
■ In this course, the equation ε = − NΔΦ

Δt  may be applied to (1) straight 
conductors moving at right angles to magnetic fields, (2) rectangular coils 
moving in and out of uniform magnetic fields, (3) rectangular coils rotating in 
uniform magnetic fields. 

QUESTIONS TO CHECK UNDERSTANDING 
9 A train is moving in a straight line at a speed 

of 2.0 m s−1 across the Earth’s magnetic field, 
which has a strength of 35 μT at that location. 
Determine the emf induced across an axle of the 
train if its length is 1.42 m and the magnetic field 
is at an angle of 70° to the vertical.

10 Figure 11.10 shows a rectangular coil of size 
4.3 cm × 2.7 cm and 500 turns placed outside of 
a uniform magnetic field of strength 5.6 mT. 

a If the coil is moved to the centre of the field in 
0.50 s, what is the magnetic flux through the 
coil in that position? 

b Determine the magnitude of the average emf induced during the movement. 

c Determine the magnitude of the average emf produced if the coil is then turned over in a time of 0.50 s. 

d Sketch a graph to show how the induced emf changes as the coil is moved from its original position at a constant 
speed to point P (no values needed).

11 Figure 11.11 shows a rectangular loop of wire which can be made to rotate 
at a constant speed within a uniform magnetic field. The dimensions of 
the coil are 6.2 cm × 3.6 cm. 

a Explain why no emf will ever be induced across XY. 

b In which position of the loop will the maximum emf be induced? 

c What is the speed of the sides of the loop when it rotates with a 
frequency of 10 Hz? 

d Calculate the maximum emf produced across the loop at this 
frequency if the field strength is 0.26 T.

e Determine the emf being induced when side XY is at: i 20°, ii 70° and 
iii 90° to the horizontal.

f How many turns would be needed for a coil of these dimensions to 
induce a maximum emf of 1.0 V at a frequency of 50 Hz?

g Explain why this apparatus can be described as an ac generator.

P

500 turns

magnetic field into paper

Figure 11.10

N S
W Z

X Y

coil rotation

Figure 11.11 
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12 Figure 11.12 shows a rod AB moving to the right across a perpendicular magnetic field, B, with a speed v. The rod can 
move without friction along the parallel conductors, which complete an electrical circuit as shown. 

a Electrons in the rod experience magnetic forces as they pass through the field. What is the direction of these forces? 

b In which direction does conventional current, I, flow around the circuit? 

c Explain why a force is needed to keep the rod moving at a constant speed. 

d Write down an expression (from Section 5.4) for that force.

l

R

A

B

speed v

magnetic flux density, B

Figure 11.12

13 Two magnets are dropped from the same height to the ground. One magnet falls freely, the other falls through a coil 
connected in a circuit, as shown in Figure 11.5. 

a Explain why the magnets take different times to reach the ground. 

b Explain why the times would be the same if the switch was opened.

11.2 Power generation and transmission
Essential idea: Generation and transmission of alternating current (ac) has 
transformed the world.

Alternating current (ac) generators 
■ In Section 8.1 we discussed how the energy transferred from (1) burning 

fuels, (2) nuclear reactions, (3) wind, and (4) falling water could be used to 
turn turbines to create the kinetic energy that is necessary for the large-scale 
generation of electrical energy.

■ An electrical generator is a device which transfers kinetic energy to electric 
energy. In this course we concentrate on alternating (ac) current generators.

■ Reminder from Section 5.1: direct currents (dc) always flow around a circuit 
in the same direction, although the magnitude of the current may vary. 
Alternating currents (ac) change direction periodically.

 Explaining the operation of a basic ac generator, 
including changing the generator frequency

■ We have seen in Section 11.1 that the side of a coil moving across a magnetic 
field will have an emf induced across it. If both sides of a coil move in the same 

Key concepts
Alternating currents are generated 
in coils rotating in magnetic fields. 
In an ac generator, brushes and 
slip rings enable the current to 
flow into an external circuit.

If a certain coil rotates at a higher 
frequency, the induced emf will be 
greater.

NATURE OF SCIENCE:

 Experimentation
Michael Faraday is rightly seen as one of the greatest of scientists. His pioneering 
work on electromagnetism was based on excellent experimental skills: making 
observations (with basic apparatus) that most others would regard as insignificant, 
or even experimental errors.
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direction through the same field, the two emfs will cancel because they 
are equal and opposite, but if the coil rotates within a magnetic field, the 
emfs induced on opposite sides will combine, because as one side goes up 
the other side goes down. Figure 11.13 shows a simple ac generator (but, for 
clarity, it only shows one loop of a coil).

■ If the coil rotates at a constant speed, the induced emf and current will 
have sinusoidal waveforms as shown in Figure 11.14. 

Time
0

current

voltage (emf)

Figure 11.14

■ The shape of the graphs in Figure 11.14 may be understood by considering the 
instantaneous motion of the coil at different positions during 
each rotation. See Figure 11.15.

■ When the coil is horizontal (position a) the sides WX and YZ 
are moving through the horizontal field at the quickest rate, 
so that the induced emf has its greatest value. In position b 
the sides are instantaneously moving parallel to the field, so 
that the induced emf is zero. Position c is similar to a, but the 
sides are now moving in the opposite direction (compared to 
a), so that the emf is reversed. 

■ If the speed of rotation increases, the induced emf will have a 
greater frequency and a greater amplitude (because the rate of 
change of magnetic flux is greater. See Figure 11.16.

Time

frequency f

frequency f
2

emf

T

Figure 11.16

■ Practical generators may have more than one coil and the coil(s) will be 
wound on iron cores. They may also use electromagnets instead of permanent 
magnets.
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Figure 11.13
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QUESTIONS TO CHECK UNDERSTANDING 
14 Make a copy of one of the graphs from Figure 11.16 and mark on it every 

time when the plane of the coil was vertical or horizontal. 

15 Explain why the coils in generators are usually wound on iron cores. 

16 a An ac generator is being designed to operate at a fixed frequency. List 
four design features which could be used to make the output emf as 
large as possible. 

b An ac generator was designed to produce 110 V 50 Hz.

i Sketch a voltage–time graph for this generator over two cycles.

ii Add a second graph on the same axes to show the output if the 
same generator was turned at 25 Hz. 

17 A small ac generator has a 600 turn coil with an area of 5.6 cm2. What is the 
magnitude of the average emf produced if it is rotating with a frequency of 
10 Hz in a uniform magnetic field of strength 0.40 T?

Average power and root mean square 
(rms) values of current and voltage 
■ Figure 11.17 shows how the voltage and the current vary with time in the 

simple ac resistor circuit shown. They are in phase with each other and both 
periodically change direction, such that their true average values are zero. (See 
below for comments about effective average values.) Note the symbol for the ac 
power supply. The current, I, is always proportional to the voltage, V across the 
ohmic resistor (V = IR).

■ The maximum values are also called the peak values.
■ From Chapter 5 we know that, in general, electrical power, P = IV.

Time
0

V0

Pmax

R

voltage

power

current I0

Figure 11.17

■ So, for example, the maximum (peak) power can be determined from the 
maximum values of current and voltage (I0 and V0): Pmax = I0V0.

■ The curve representing power, P, in Figure 11.17 has been determined by 
multiplying the instantaneous values for voltage and current. The power is 
always positive because I and V always have the same signs as each other. 
Positive power means that energy is always being transferred to (rather than 
from) the resistor, where it is transferred to internal energy.

■ For a power graph of this shape (a sine squared graph) the average value, P, is 
half the peak value ( P= 1

2Pmax), so that P  = 1
2I0V0.

 The effective average values of current and voltage are called root mean 
squared (rms) values, but there is no requirement to understand the origin 
of this term in the IB Physics course.

 So that P  = IrmsVrms. This means that the rms values for the current and 
voltage must be equal to their maximum values divided by 2: Irms = 

II

22

00  
and Vrms = 

VV

22

00 . 

■ An electrical supply rated at, for example, 230 V has exactly the same heating 
effect in a resistor whether it is alternating or constant.

Key concept
An rms value is that value of an 
ac current (or voltage) which 
dissipates power in a resistor at the 
same rate as a steady direct current 
(or voltage) of the same value.
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■ Ohm’s law can be used with rms values. R = ==
VV

II

VV

II
rrmmss

rrmmss

00

00

. 

■ Remember also (from Chapter 5) that P = VV
RR

22

 and P = I2R. These equations 

can be used for alternating currents with peak or rms values.

 Solving problems involving the average power in an 
ac circuit 

QUESTIONS TO CHECK UNDERSTANDING 
18 An electrical supply is rated at 110 V ac 50 Hz. 

a What is the maximum value of this voltage? 

b What rms current will be produced when the 
supply is connected across a heating element of 
15.0 Ω in an electric toaster? 

c What is the (average) power of the toaster? 

19 Consider again Figure 11.17. 

a If the average power transformed in the resistor 
was 24 W, what was the maximum rate of energy 
transfer? 

b If the peak voltage was 12.0 V, what was the peak 
value of the current? 

c Determine the rms current in the circuit. 

20 The resistance of a domestic water heater is 28 Ω and it is connected to an ac voltage supply, Vrms = 230 V. 

a Calculate the average rate at which energy is transferred to the water. 

b What dc voltage would provide the same power when connected to the same heater? 

21 Figure 11.18 shows how a voltage varies with time. 

a What is its peak value? 

b What is its average value? 

c Calculate Vrms. 

d What is the frequency of this supply?

Time/ms
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Figure 11.18

Transformers 
■ A transformer is a device which changes (transforms) an alternating voltage 

to another value. It uses the electromagnetic induction created by a time-
changing magnetic flux (see Section 11.1). 

■ Figure 11.19a shows the essential features of a simple transformer. Two coils 
of wire are wound on the same soft iron core. Figure 11.19b shows the circuit 
symbol for a transformer.

soft iron
core

magnetic flux passes
through the core

a

b

ac
input

εp

primary coil
(Np turns)

secondary coil
(Ns turns)

ac output εs 
(induced emf)

Figure 11.19

Key concept
In a transformer an alternating 
voltage, εp, drives an alternating 
current, Ip, through the primary 
coil creating an alternating magnetic 
flux linkage which passes through 
the iron core to the secondary 
coil, where it induces an emf, εs.
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■ For an ideal transformer in which there is no dissipation of energy to internal 
energy, the input power and output powers will be equal: Ipεp = Isεs.

■ Or, 
dp
ds

 = 
Is

Ip

. The ratio of the input and output voltages in an ideal transformer 

are decided by the ratio of number of turns, so that:  
N

N

I

I

p

s

p

s

s

p

ε

ε
== == .

Describing the use of transformers 
in ac electrical power distribution 
■ Electrical energy is transferred around the world using transmission lines, which 

are thick cables made of good metallic conductors. See Figure 11.20.

Figure 11.20

■ The cables need to have low resistance (from Section 5.2: R =
L

A

ρ
), so they are 

made of metals of relatively low resistivity. Aluminium is usually used because 
of its low cost and density. Thinner cables of copper (for example) could 
equally well be used, but the cost would be higher.

■ In order to minimize power losses by keeping the currents in transmission lines 
low, high voltages must be used if large amounts of power are to be transferred 
(P = VI). Therefore, transformers are needed to step-up (increase) and then 
step-down (decrease) the voltage at various places along the transmission line. 
See Figure 11.21.

long distance
transmission line

short
distance

short
distance

step-up transformers step-down transformers

townpower
station

250 V25 kV 500 kV

Figure 11.21

■ Safety considerations will limit the maximum voltages that can be used.
■ Real transformers are not 100% efficient because of power losses due to: 

 some energy is transferred to internal energy as currents flow through the 
resistance of the coils (sometimes called joule heating) 

Common mistake

When making calculations about 
a transformer, the output has to 
be considered first. The current in 
the primary coil adjusts to provide 
the power output taken from the 
secondary coil.

Key concept
Significant amounts of energy 
(P = I2R) will be transferred to 
internal energy in transmission 
lines if the currents are too high. 
Transformers are used to reduce 
currents, while increasing voltages 
(P = IV).
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 some energy is transferred to internal energy as eddy currents (see 
below) flow through the core, to limit this effect the core is usually 
laminated (made from many insulated layers) 

 some energy is involved when the core is repeatedly magnetized and 
demagnetized (magnetic hysteresis effects)

 some magnetic flux also ‘leaks’ from the iron core.
■ Because transformers are needed, electrical power is usually transferred over 

large distances using alternating currents (dc would not produce the necessary 
changing magnetic flux for the operation of a transformer).

Expert tip

When any piece of metal experiences a changing magnetic flux, currents will be 
induced and circulate within the solid metal (transferring energy to internal energy). 
These are known as eddy currents. The eddy currents will produce their own 
magnetic field which will oppose the change that produced them (an example of 
Lenz’s law). Figure 11.22 shows a magnetic field perpendicular to part of a rotating 
metal disc. The induced eddy currents will circulate in directions such as to oppose 
the motion of the disc, which will slow down. The disc loses the energy that was 
transferred to the currents. S

N

Figure 11.22

 Solving problems involving step-up and step-down 
transformers 

■ Calculations will be restricted to ideal transformers.

QUESTIONS TO CHECK UNDERSTANDING 
22 A transformer designed to use an input of 230 V is used to supply an output of 12 V. 

a Is this a step-up or a step-down transformer? 

b If the primary coil has 2500 turns, how many turns are on the secondary coil? 

c If a 64 W device is connected to the output, what current will flow through it? 

d What current flows through the primary coil when:

i the 64 W device is connected across the secondary coil
ii there is no device connected to the secondary? 

23 Figure 11.21 shows the position of a step-up transformer in an electrical power transmission system. 

a Explain why it is located close to the power station. 
b Write down a possible turns ratio for this transformer. 
c At a time when the input current was 28 A and the transformer was 95% efficient, calculate the power loss in the 

transformer. 
d Write down two possible reasons for this power loss. 

24 a Draw a circuit diagram in which an alternating voltage supply is connected to a step-down transformer which has a 
2.5 V lamp connected across its output. 

b If the transformer has two coils with turns of 60 and 2400, what input voltage is required for the lamp to be 
operating correctly?

Half-wave and full-wave rectification 
■ Although alternating currents are used for transferring large amounts of 

electrical energy around the country, they are not suitable for use with many 
electronic devices (which need dc). 

■ Therefore we need to convert ac to dc before a power source is connected to 
many devices. Converting ac to dc is known as rectification. Transformers 
which supply low voltages often also include a rectification circuit.

■ The simplest device which can be used to rectify a current is a diode. A 
diode allows current to pass through it only in one direction. Figure 11.23 
shows the output from a transformer connected through a diode to a load 
(resistor). The arrow of the circuit symbol shows the direction in which 
conventional current can pass through the diode. We will assume that the 

Key concept
In calculations we will assume that 
transformers are 100% efficient, 
but in practice some energy will 
be transferred to the environment, 
mainly due to heating of the coils 
and core.

current

load
resistor

diode

Figure 11.23
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diode has insignificant resistance for current flowing in this direction, but a 
very large resistance for the opposite direction.

■ Figure 11.24 shows the variations in voltage across the resistor for (i) a circuit 
without a diode and (ii) a circuit with a diode (connected both ways). The use 
of a single diode produces half-wave rectification. Full-wave rectification is 
discussed below.

■ The shapes of the graphs in Figure 11.24 could also represent the variation 
of current in the circuit (because the current through an ohmic resistor is 
proportional to the voltage across it).

■ Ammeters and voltmeters would be of little use in this circuit because they are 
calibrated for use with either dc or full sinusoidal wave ac. The waveforms shown 
in Figure 11.24 are best observed by connecting an oscilloscope across the resistor.

 Diode bridges 
■ Full-wave rectification (as shown in Figure 11.27) can be achieved by using four 

diodes in a bridge circuit.

Expert tip

A typical ‘bridge’ circuit contains two 
pairs of components connected in parallel, 
with a connection (a ‘bridge’) made 
between their intermediate points. Figure 
11.25 shows an example using resistors (this 
circuit is called a Wheatstone bridge). The 
variable resistor is adjusted until no current 
flows through the meter, and then the value 
of an unknown resistance in the circuit can 
be determined very accurately. (This is not 
required in this course).

R3

Rx
R2

R1

Figure 11.25

■ Figure 11.26 shows four identical diodes connected in a diode bridge circuit 
across the output of a transformer. At a moment when point A is at a positive 
potential the current will follow the path ABCDEF. A little time later, as the 
output from the transformer changes, point F becomes positive and the current 
path is FBCDEA. The current through CD is always in the same direction.

load
resistorF

C

D

A

E
B

Figure 11.26

Expert tip 

Oscilloscopes are used for displaying how a voltage varies with time. The input 
might be from a regularly repeating process (such as in Figure 11.24), or the more 
variable signals from the various types of sensor which provide a voltage output 
(a microphone, for example). The voltage scales can be easily adjusted for input 
p.d.s of most magnitudes and the timescale can be adjusted for variations over 
seconds or microseconds. 

 Investigating a diode bridge rectification circuit 
experimentally 

■ An oscilloscope connected across the load resistor in Figure 11.26 will display 
the full-wave rectification variation of voltage shown in Figure 11.27. The effect 
of adding a capacitor can also be observed (see the next section).
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with diode
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0

diode connections reversed

Figure 11.24

Key concept
Half-wave rectification of an 
alternating current requires 
a single diode. Full-wave 
rectification needs four diodes in a 
‘bridge’ circuit.

0 t

v

Figure 11.27
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 Qualitatively describing the effect of adding a 
capacitor to a diode bridge rectification circuit 

■ Although the output from the bridge circuit shown in Figure 11.27 will result 
in a direct current through the load, it is certainly not a steady dc and will 
probably be unsuitable for many possible uses. The voltage can be smoothed by 
adding a capacitor across the output.

■ The capacitor chosen must have a value so that if does not discharge too 
quickly or too slowly (no calculations needed).

■ Figure 11.29 shows the effect of capacitor smoothing a full-wave rectified 
voltage. When the output from the rectifier circuit falls, the voltage across the 
capacitor falls more slowly and maintains the voltage across the load resistor. 
The rate at which the capacitor discharges depends on the values of the 
capacitor and the resistance (from Section 11.3: time constant, τ = CR).

QUESTIONS TO CHECK UNDERSTANDING 
25 Sketch the V/I characteristic of a diode to show the variation of current for 

both forward (+V) and reverse (−V) voltages. 

26 a When an ac ammeter is used to measure the magnitude of an 
alternating current, does it display the peak value or the rms value? 

b Explain why such an ammeter is unsuitable for measuring the current in 
a circuit such as that shown in Figure 11.26. 

27 A 6 V volt (rms) supply was connected across a single diode and a lamp 
rated at 6.0 V, 3.0 W in series with each other. 

a If the frequency of the supply was 100 Hz, sketch what would be seen 
on an oscilloscope connected across the lamp if it had a 10 cm wide 
screen and the beam producing the trace was moving from left to right 
across the screen at 5.0 m s−1. 

b What current would flow through the lamp if it was connected directly 
to the 6 V ac supply? 

c Describe the appearance of the lamp when it was in series with the 
diode. 

28 12 V dc power supplies are commonly used in school laboratories. Draw the 
circuit necessary for producing a smooth 12 V from a 230 V ac supply. 

29 Consider Figure 11.29. Sketch the output from the same rectification circuit 
if the capacitor was replaced with another one of lower capacitance.

Key concept
If a suitable capacitor (see  
Section 11.3) is connected 
across the output of a rectifier, 
as in Figure 11.28, it can smooth 
the voltage so that there is less 
variation. 

0
tv ou

t

output
voltage

Figure 11.29

from
rectifier capacitor

VoutR

Figure 11.28

NATURE OF SCIENCE

 Bias
Our experiences, education, friendships, culture, personality etc. all influence the 
way we process information and form opinions. This is inevitable, but it should 
be very much part of their scientific method that scientists are aware of their own 
(unintentional) biases and try to be objective about their own work and when 
reviewing the work of others. But, human nature being what it is, conflicts can still 
occur because of entrenched opinions and financial concerns. Towards the end of the 
nineteenth century there was extensive and sometimes irrational debate (especially in 
the USA) about whether ac or dc was better for electrical power transmission.

11.3 Capacitance
Essential idea: Capacitors can be used to store electrical energy for later use.

Capacitance 
■ The ability of any object to ‘store’ electric charge is described as capacitance. 

An electrical component designed to have significant capacitance is called a 
capacitor.

■ Capacitors are useful components of circuits because of their ability to store 
small amounts of energy and the fact that the voltage across them can change 
in a predictable way with time.
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Parallel plate capacitors 
■ When the switch in Figure 11.30 is connected to A, the battery will attract 

electrons off one plate and push them onto the other in a process we call 
charging the capacitor. As a plate becomes charged, electric forces will begin to 
resist further charging. For example, the extra electrons on the negative plate 
will tend to repel further electrons being added. Charging stops when p.d. 
across the plates has risen to become equal to the p.d. across the battery.

+ −

conventional
current

flow of
electrons

flow of
electrons

A

B

+ +
++ +
++ +
++ +
+

−−
−−− −−−−
−−−
−

Figure 11.30

■ When there is a p.d. across the plates, there will be a uniform electric field 
between them. This arrangement has been described in Chapters 5 and 10.

■ Although the plates have equal and opposite charge, we sometimes say that 
the capacitor has stored charge. 

■ When the switch is connected to B the electrons reverse their movement 
and the capacitor becomes discharged. The discharge current transfers energy 
and therefore we can say that (electric potential) energy was stored on the 
charged capacitor.

■ Charging and discharging occur very quickly unless there is significant 
resistance in the circuit.

■ Figure 11.31 shows the circuit symbol for a capacitor. Because of their design, 
some capacitors must be connected the correct way around. They are marked 
with their polarity.

 Factors affecting the charge on a plate in a parallel 
plate capacitor 

■ The charge, q, that builds up on each plate of a capacitor is proportional 
to (i) the p.d. between the plates, V, and (ii) the area of the plates, A. The 
arrangement is shown in Figure 11.32.

■ The charge, q, on each plate of a capacitor is inversely proportional to the 
separation of the plates, d. (For example, doubling the separation will halve 
the charge, all other factors remaining unchanged.)

■ The charge, q, on each plate of a capacitor also depends on the medium 
between the plates. We saw in Section 5.1 that the electric permittivity of a 
medium, ε, represents its electric properties. 

■ ε0 is the permittivity of free space, which is similar in value to that for air. 
ε0 = 8.85 × 10−12 C2 N−1 m−2. All other materials have a permittivity greater 
than ε0.

■ Summarizing this information, the charge stored on a parallel plate capacitor 
can be calculated from the equation q = ε VA

d .

Key concept
Parallel metallic plates separated 
by an insulator are the most 
common kind of capacitor. When 
a p.d. is connected across the 
plates they will gain equal and 
opposite charge.

Figure 11.31

plates of area A

q

q

p.d. between
plates is V

medium of 
permittivity e

d

Figure 11.32

Common mistake

Note that the plates of a charged 
capacitor have equal and opposite 
charge: +q and −q. The same charge 
has been moved from one plate to 
the other. When we refer to the 
charge on a capacitor, we refer to q, 
not 2q, and the sign of the charge is 
not discussed. 
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 Calculating capacitance 
■ Capacitance is defined as the charge on either plate/potential difference 

between the plates. C = qq
VV

. Capacitance has the SI unit of the farad, F. This is 

a large unit, so that μF and pF are in common use.
■ Comparing the last two equations gives C = εAA

dd
, showing that a large value of 

capacitance requires plates of large area, very close together, with a medium of 
high electric permittivity between them.

Dielectric materials 
■ The insulating medium placed between the parallel plates of a capacitor is 

known as a dielectric material. 

 Describing the effect of different dielectric  
materials on capacitance 

■ Some charges within the molecules of a dielectric medium can move 
so that the molecules become polarized. Figure 11.33 shows that 
these polarized molecules align with the electric field. The overall 
effect is to reduce the electric field between the plates (compared 
to air). This allows more charge onto the plates for the same p.d., 
thereby increasing the capacitance, as shown in the equation 
highlighted above.

Expert tip

Larger values of capacitance generally require capacitors of increasing 
physical size (opposite to resistance). This means that keeping the 
plates very close together and using a dielectric material of high 
permittivity is important. 

The term relative permittivity is sometimes used to represent the ratio 
of the permittivity of a material to that of vacuum/air. 

 Solving problems involving parallel plate capacitors 

 

QUESTIONS TO CHECK UNDERSTANDING 
30 Sketch the electric field that exists between charged parallel plates. 

31 Parallel metals plates, each of area 4.8 cm2 are separated by 1.0 mm in air. 

a What charge will flow onto the plates when a p.d. of 80 V is connected 
across them? 

b The insulated plates are then disconnected from the voltage supply and 
their separation increased to 2.0 mm. What affect does this have on:

i the charge on the plates

ii the p.d. across the plates? 

32 a What is the capacitance of a capacitor which gets charged to 4.5 × 
10−6 C when connected across a p.d. of 1.5 V? 

b What total charge would be on the same capacitor if it was connected 
across 12 V? 

33 A student makes a capacitor by placing 10 cm square pieces of aluminium 
foil on both sides of a thin sheet of plastic.

a If the plastic was 0.12 mm thick and had a permittivity of 2.03 × 
10−11 C2 N−1 m−2, what was the capacitance of the arrangement? 

b How much charge would flow onto this capacitor if it was connected to 
6.0 V? 

34 A certain kind of paper has an electric permittivity of 3.41 × 10−11 C2 N−1 m−2. 
If this paper was used in the space between the plates of a capacitor instead 
of air, by what factor would the capacitance increase?

 

Key concept
The capacitance of parallel plates 
increases if the plates have larger 
area and are closer together. 
Adding a suitable insulator 
(dielectric material), with high 
permittivity, between the plates 
also increases capacitance.
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Determining the energy stored 
in a charged capacitor 
■ Figure 11.34 shows how the charge on a capacitor changed as the p.d. across its 

plates is increased.
■ The gradient of this graph is equal to the capacitance (C = q

V ).  
■ Since V = energy/charge, the energy stored on a capacitor, E = average value of 

charging voltage multiplied by charge, E = 1
2
qV. This also equals the area under 

a V–q graph like that shown in Figure 11.34.
■ Or, since q = CV, E =   CV 2. 

Expert tip

A 1 F capacitor is a relatively large value capacitance and it might be the size of 
a cup. When it is connected to, for example, 100 V, the energy stored is only 
5000 J. A battery of the same size can store much more energy, so capacitors are 
not usually used for storing large amounts of energy. However, capacitors may 
be considered to have no effective internal resistance so that they can be very 
useful in delivering (relatively small amounts of) energy very quickly, for example 
to power the flash of a camera.
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Capacitors in series and parallel 
■ Figure 11.35 shows three capacitors connected in parallel across the same p.d. 

The total charge stored, q (= q1 + q2 + q3), is the same as would be stored on a 
single capacitor of capacitance Cparallel connected to the same voltage:
q = VCparallel = VC1 + VC2 + VC3.

■ This leads to the equation for calculating the overall capacitance of two or 
more capacitors connected in parallel: Cparallel = C1 + C2 + …

■ This can be compared to the equation for calculating the overall capacitance 

of two or more capacitors connected in series: 
1

=
1

+
1

+…
series 1 2C C C

■ When capacitors are connected in series the charge which flows off one 
must equal the charge which flows onto another. That is, they must all have 
the same charge. Using this fact together with V = V1 + V2 + V3 leads to the 
previous highlighted equation.

V

+

− C1, q1 C2, q2 C3, q3

 

C1 C2 C3

q1 q2 q3

V
+

−

Figure 11.35 Figure 11.36

 Investigating combinations of capacitors in series 
and parallel

■ The value of an unknown, uncharged capacitor (or combination of capacitors) 
can be found by connecting it in parallel across a known, charged capacitance 
and observing the change in p.d. See Figure 11.37. When the switch is closed 
the capacitors will share the charge and the value of V will fall. 

■ For example, consider a capacitor, C1, of capacitance 480 μF charged by 12.0 V 
connected to an uncharged capacitor, C2, of unknown capacitance. The 
total charge, q, can be assumed to be constant, but it is now shared. If the 
voltage across the combination fell to 8.0 V, q = C1V1 = CcombVcomb. Hence the 
capacitance of the combination can be determined (720 μF) and the equation 
for capacitors in parallel used to determine the unknown capacitance (240 μF). 

■ Alternatively an unknown capacitance can be determined from the rate of 
decrease of current (or voltage) when it discharges through a known resistance 
(see below). 

1
2

V

charged,
known capacitor

uncharged, 
unknown capacitor

Figure 11.37

Key concept
Capacitors can store small amounts 
of energy (   CV 2) which can then 
be delivered to a circuit at a rate 
depending upon the resistance in 
the circuit.

1
2
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QUESTIONS TO CHECK UNDERSTANDING 
35 Consider Figure 11.34. Determine:

a the value of the capacitor represented

b the energy stored when the p.d. across the capacitor was 6.0 V.

36 The voltage used in a defibrillator was 1000 V. See Figure 11.38. What 
capacitor value would be able to store energy of 500 J to supply a patient at 
this voltage? 

37 The flash of a camera is powered by a 180 μF capacitor. Estimate the average 
power of a 250 V flash that had a duration of 1/200 second.

38 a What four values of combined capacitance can be made by connecting 
three 27 pf capacitors together? 

b Describe how you could confirm experimentally that your answers were 
correct. 

39 A 22 μF capacitor charged to 9.0 V was connected across an uncharged 33 μF 
capacitor.

a What was the voltage across them after the connection was made? 

b Calculate the energy stored:

i on the original charged capacitor

ii on the combination. 

c Account for the difference between these energies.

Figure 11.38

Resistor–capacitor (RC) circuits 
■ Unless it is required to discharge a capacitor very quickly, a resistor will be 

included in any capacitor circuit in order to control the rate of discharging  
(or charging).

■ The charging or discharging of a capacitor can be observed and recorded by 
measuring either the changing p.d. across it, or the changing current through 
the resistor (no current actually flows through the capacitor). See Figure 11.39. 
which shows a resistor-capacitor (RC) circuit which can be alternately 
charged and discharged. When the switch is moved to A the capacitor will 
charge through the resistor, and it will discharge through R when connected 
to B. If required, a small, low voltage capacitor can be discharged quickly by 
putting a connecting lead across its terminals. 

 Describing the nature of the exponential discharge 
of a capacitor 

■ When a capacitor discharges, the rate of discharge will be highest at the 
beginning because the amount of charge on the plates is greatest, so that the 
free electrons experience the greatest forces. The rate of discharge decreases 
with time, but theoretically never reaches zero.

■ Figure 11.40 shows a typical discharge graph. Note that it may represent the 
variation with time of the discharge current, or the voltage across the 
capacitor, or the charge remaining on the capacitor plates. 

■ The graph is characterized by the fact that the rate of discharge 
at any time (which could be determined from the gradient of 
the graph at that moment) is proportional to the value of the 
quantity at that moment. For example, −

ΔQ
Δt  ∝ Q. This is the 

necessary condition for an exponential decrease.
■ In equal time intervals the values shown on the graph decrease 

to the same fraction. That is, the ratio of the values at the 
beginning and end of any equal time intervals are always the 
same. For the example of Figure 11.40, the value of each (equally 
spaced) point is 67% of the previous point.

C R

B

A

V

A

Figure 11.39

Key concept
During a capacitor discharge, 
the charge, voltage and current 
decrease exponentially. That 
is, their values fall by the same 
fraction in equal time intervals.
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■ As with the exponential decay of the count from a radioactive source  
(Section 7.1), we cannot quote a time for the process to end (because in theory 
it will never end). The concept of half-life is used with irreversible radioactive 
decay, but for capacitor discharge it is preferred to characterize the exponential 
decrease by the use of a time constant (see below).

 Exponential equations 
■ Consider the exponential decrease shown in Figure 11.41. If any quantity 

has a value N0 at the beginning of a time interval t and then decreases 
exponentially (as described above), its value at the end of the time interval, N, 
can be represented by the following equation:
N = N0 e

−kt

 where k is a constant and e is the number 2.718. This number arises 
naturally in the st udy of exponential changes.

■ The greater the value of k, the quicker the decrease.
■ For RC circuits, the larger the value of the capacitor and/or the resistor, 

the slower the rate of discharge, and k = 1
RC

. We can now write 
down three similar equations to represent the exponential decrease 
of the three quantities during discharge (there is no requirement to 
understand the origin of these equations):

 q = q0 e
−  t

RC 

 I = I0 e
−  t

RC 

 V = V0 e
−  t

RC 

 Time constant 
■ The product of the capacitance and resistance of a circuit is called the circuit’s 

time constant, τ. s = CR (unit: seconds, s). 
■ The three equations above can therefore be written as:     q q0 t

τI I0 t
τV V0 t

τ

■ Consider a numerical example for a circuit containing a capacitor of 78 μF and 
a resistor of 560 kΩ. The time constant of this circuit is 44 s. If the capacitor was 
charged to 12 V (V0) before the discharging began, the charge on the capacitor 
would then be 9.4 × 10−4 C, the initial current (I0) would be 21 μA. After 44 s all 
three of these values will have fallen to 37% of their initial values.

■ If we want to find values at other times, we need to use one, or more, of the 
equations highlighted above. For example, suppose we want to know the 
current, I, through the resistor after 10 s: I = I0 e

−
t
τ  = (21 × 10−6) × e−

10
44 ; taking 

natural logarithms: ln I = ln (21 × 10−6) − 0.227; leading to I = 17 μA.
 If we take natural logarithms of the equations highlighted above we get (using 

current as an example): ln I = ln I0 −
t
τ. 

■ A graph of ln I–t will be a straight line with a negative gradient, as shown in 
Figure 11.42. (The values of ln I will probably be negative because the currents 
are usually small.)

■ A straight-line graph like this provides the best way of determining a value  
for τ from experimental data (= −1/gradient). (Compare ln I = − 

t
τ  + ln I0 to  

y = mx + c.)

 Comparing charging and discharging graphs
■ Figure 11.43 compares graphs for charging and discharging.
■ Comparing charging to discharging, the rate of charging is still controlled  

by the time constant, and the charging current still falls by 37% in a time  
of RC, however the voltage and charge are increasing, so that the time 
constant is the time for V or q to rise from zero to (100 − 37)% = 63% of  
the maximum.
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Key concept
The time constant, τ, is equal to 
the time that it takes for the charge 
(or current or voltage) to decrease 
to 1/e × the original value (37%).
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 Solving problems involving the discharge of a 
capacitor through a resistor / Solving problems 
involving the time constant of an RC circuit for 
charge, voltage and current 

QUESTIONS TO CHECK UNDERSTANDING 
40 Show that the units of the time constant are seconds. 

41 An unknown capacitor was discharged through a 11 kΩ resistor and the current in the circuit fell to 37% of its initial 
value of 54 mA in a time of 12 s. 

a What was the value of the capacitance? 

b What was the value of the current after another 12 s? 

42 A 6.0 V battery was used to fully charge a 3.9 μF capacitor. It was then discharged through a 68 kΩ resistor. 

a What was the initial discharge current? 

b Calculate the time constant of the circuit. 

c Sketch a graph to show how the voltage across the capacitor changed during the first second of discharge. 

43 A student recorded the discharge of a capacitor by measuring the p.d. across it at regular times. After two minutes the 
voltage was 4.69 V and one minute later it had fallen to 3.22 V. 

a Determine the time constant of the circuit. 

b Calculate the voltage across the capacitor after a further five minutes. 

44 A fully charged 24 V, 68 μF capacitor is discharged through a 5.6 kΩ resistor. 

a Determine the time constant of the circuit. 

b How much charge was initially stored on the capacitor? 

c Write down an exponential equation to represent how the charge on this capacitor changed with time. 

d Calculate the time interval until the charge on the capacitor has fallen to 4.5 × 10−5 C. 

45 A 12 V battery is connected across an uncharged 2.7 μF capacitor and an 8.2 MΩ resistor in series. Sketch two graphs 
(on the same axes) to show how the voltages across the capacitor and resistor change during the first 70 s. 

46 Consider again Figure 11.43, which represents the discharge in an RC circuit. The value of ln I0 was −9.57 and ln I was 
−12.14 at time 100 s.

a What was the initial discharge current? 

b Determine the time constant of the circuit. 

c If the resistance in the circuit was 820 kΩ, what was the capacitance of the circuit? 

NATURE OF SCIENCE

 Relationships
There are many examples of exponential changes to be found in physics. In 
particular, in this course we use the mathematics of exponentials in the study of 
capacitors and radioactive decay, but the same branch of mathematics has many 
applications beyond physics and science.



Quantum and nuclear physics

12.1  The interaction of 
matter with radiation

Essential idea: the microscopic quantum world offers a range of phenomena, the 
interpretation and explanation of which require new ideas and concepts not found 
in the classical world.

Photons 
■ In Chapter 7 we saw that electromagnetic radiation can be considered to 

be composed of large numbers of small ‘packets’ of energy called photons 
(or quanta) and that the energy of each photon, E, can be determined from 
E = hf, where h represents Planck’s constant and f represents the frequency of 
the radiation.

■ Photons are emitted or absorbed when there are changes in the energy levels 
of atoms, molecules and ions.

■ However, the most convincing evidence for the quantum (photon) theory of 
radiation is provided by the photoelectric effect.

The photoelectric effect 
■ We know from Section 5.1 that metals contain free electrons. These electrons 

may be emitted from some clean metal surfaces when the metal is illuminated 
by suitable electromagnetic radiation, usually ultraviolet radiation (the photons 
of which carry more energy than visible light). This phenomenon is called 
photoelectric emission, or the photoelectric effect.

 Discussing the photoelectric effect experiment and 
explaining which features of the experiment cannot 
be explained by the classical wave theory of light 

■ The photoelectric effect can be demonstrated using an ultraviolet source, 
a clean zinc plate and a very sensitive charge measuring instrument (a 
coulombmeter). The principle is shown in Figure 12.1.  The emitted electrons 
are called photoelectrons.

ultraviolet
radiation

negatively charged
photoelectrons

coulombmeter

zinc plate
becomes
positively
charged

  Figure 12.1

Key concept
For a particular metal surface, 
photoelectrons are only emitted 
for radiation which has a 
frequency above the metal’s 
threshold frequency. The intensity 
of the radiation does not affect 
the energies of individual 
photoelectrons.

12

Expert tip

In practice, the 
photoelectrons in Figure 
12.1 will be attracted back 
to the plate and it is better 
to first charge the plate 
negatively, so that the 
photoelectrons are repelled, 
and the magnitude of the 
negative charge on the plate 
decreases.

Figure 12.2 shows an 
alternative demonstration 
using a gold-leaf 
electroscope.
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Figure 12.2
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■ The most important observations from these and related experiments on the 
photoelectric effect (see below) are:

 for photoelectric emission to occur, there is a threshold frequency, f0, 
below which no electrons are released (regardless of the intensity or the 
duration of the radiation)

 there is never any measurable time delay between the radiation striking the 
surface and the emission of the photoelectrons (regardless of the intensity 
of the radiation)

 the maximum energy of the emitted electrons depends on the frequency of 
the radiation, but not the intensity

 increasing the intensity of the radiation increases only the number of 
photoelectrons emitted.

■ None of these observations can be explained by the classical wave theory of 
light. Using the wave theory we might predict (wrongly) that the effect would 
occur with radiation of any frequency, and that the photoelectrons would be 
emitted only after sufficient time had passed for the waves to deliver enough 
energy to the surface of the metal, and that greater intensity radiation would 
produce more energetic photoelectrons.

■ A minimum (threshold) frequency is observed because individual photons 
require a minimum energy for the photoelectric effect to occur with a 
particular metal (E = hf).

 Einstein’s equation and the work function 
■ We will now discuss the photoelectric effect in more mathematical detail. 

We must first identify the work function, F, of a metal surface, which is the 
minimum energy needed to free an electron from that surface. The electrons 
need kinetic energy to overcome the forces from positive charges pulling them 
back to the metal.

■ The units usually used for work function are electron volts, eV (see Section 5.1). 
Different metals have different work functions. For example, the work function 
of zinc (as mentioned above) is 4.33 eV (= 6.94 × 10−19 J). This means that for 
electromagnetic radiation to produce the photoelectric with zinc, its photons 
must have at least this energy. Using E = hf shows that the minimum frequency 
needed is 1.0 × 1015 Hz, which is in the ultraviolet part of the spectrum. Visible 
light photons do not have enough energy to cause photoelectric emission  
with zinc.

 It is important to realize that electrons in different locations will require 
different amounts of energy to escape from the surface. The work function is 
just the minimum amount required for a particular metal.

 If the photoelectric effect occurs at a particular frequency for a particular 
metal, then the energy carried by the photons = work function + maximum 
energy of photoelectrons, or in symbols:

■ hf = F + Emax. This is called the Einstein photoelectric equation, which 
may also be written as: Emax = hf − F

■ Figure 12.3 represents this equation graphically. Comparing this to equations 
of the form y = mx + c, we see that the magnitude of the intercept is the work 
function, F, and the gradient is Planck’s constant, h. 

 The threshold frequency, f0, occurs when Emax = 0. That is, hf0 = Φ.
■ Because Planck’s constant is a fundamental constant, graphs for all metals will 

have the same gradient.

 Experiment to determine Planck’s constant and 
work function 

■ If we wish to use a photoelectric emission experiment to determine values of 
Planck’s constant and the work function of the metal used, we must develop a 
way of measuring Emax. Figure 12.4 shows a suitable arrangement.

Key concepts 
Einstein’s explanation of the 
photoelectric effect assumes that 
individual photons (not waves) 
each transfer all of their energy 
to individual electrons and, only 
if that energy is enough, will the 
electrons be able to escape from 
the surface.

The work function, F, of a metal 
is the minimum energy required to 
remove a photoelectron from its 
surface.
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■ Photoelectrons are emitted from the metal surface of the cathode when suitable 
electromagnetic radiation is incident upon it. The frequency of the radiation 
is needed in the calculations and radiation of a single frequency is desirable 
(monochromatic). Because there is no air in the tube (it is evacuated), the 
photoelectrons are able to travel to the anode without losing any kinetic energy.

■ The movement of the negatively charged photoelectrons is controlled by the 
p.d. across the tube. If the anode is made positive, electrons will be attracted to 
it, but if a reverse voltage p.d. is applied, the electrons will be repelled.

■ The reverse p.d. is slowly increased from zero until even the most energetic 
photoelectrons (those with energy Emax) just cannot reach the anode. At this 
time the current will just be reduced to zero. This is shown in Figure 12.5.

 The maximum kinetic energy lost by photoelectrons = electric potential 
energy gained by those electrons: Emax = eVs, where Vs is the reverse voltage 
which just stops the photoelectric current.

■ We can now re-write the Einstein equation (Emax = hf − F) in terms of a 
quantity we can measure directly, Vs: 

 eVs = hf − F

■ Measurement of the stopping voltage, Vs, for different frequencies enables 
Planck’s constant, the work function and threshold frequency for any 
particular metal to be determined. See Figure 12.6 for an example. 

 Solving photoelectric problems both graphically and 
algebraically 

Key concept
The maximum energy of emitted 
photoelectrons can be determined 
by increasing the size of a ‘reverse’ 
voltage until they are all repelled.
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QUESTIONS TO CHECK UNDERSTANDING
1 In an experiment, the photoelectric effect is detected from a clean metal surface with electromagnetic radiation of a 

certain frequency. 

a Explain what will happen to the energy of the photoelectrons and the number of photoelectrons when:

i the intensity of the radiation is increased (at the same frequency)

ii the frequency of the radiation is increased (at the same intensity). 

b With the original intensity and frequency, the metal is changed for another with a different work function. Explain 
why photoelectric emission may stop.

2 Sketch a labelled Emax–f graph for photoelectric emission from magnesium (F = 3.7 eV)

3 The work functions of caesium, iron and platinum are 2.1 eV, 4.5 eV and 6.4 eV. 

a Which metal is the most likely to release photoelectrons with visible light? 

b Convert 4.5 eV to joules. 

c What is the threshold frequency for iron? 

d What is the threshold wavelength for platinum? 

e What is the maximum energy of photoelectrons emitted from iron by radiation of frequency 8.4 × 1015 Hz?
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4 Consider Figure 12.6. Using the graph, determine values for:

a the threshold frequency 

b the work function 

c Planck’s constant.

5 In an experiment such as that shown in Figure 12.4, calculate the 
value of the reverse p.d., Vs, which would be needed to just prevent a 
photoelectric current with radiation of frequency 1.2 × 1015 Hz if the 
metal had a work function of 2.3 eV.

6 Make a copy of Figure 12.7, which shows the variation of 
photoelectric current with p.d. for a certain metal and radiation of 
a fixed frequency and intensity. On the same axes, draw a second 
graph to show what would happen if the intensity of the radiation 
was increased. 
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0

Photoelectric
current, I
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Figure 12.7

Quantization of angular momentum 
and the Bohr model for hydrogen 
■ In Section 7.1 we saw that the spectral analysis of the light emitted from 

excited atoms of hydrogen shows that the atoms have a series of discrete energy 
levels. These are shown in Figure 12.8. The atoms of other elements have 
similar (but more complicated) energy levels. 

 Niels Bohr was the first to develop a numerical description of the discrete 
energy levels of hydrogen atoms.

■ For hydrogen, the simplest atom, the energy of these levels had been found 

to fit the empirical mathematical formula: E = –13.6
n2  eV, where n is an integer, 

known as the principal quantum number. Remember that the energy levels have 
negative values because energy has to be supplied to free the electron from the 
attraction of the nucleus.

■ The Bohr model of the hydrogen atom explains these levels by stating that 
electrons orbit the nuclei at a constant radius because of the electric force of 
attraction, but the electrons could only be in certain precise orbits such that 
their angular momentum (mvr) could only have discrete values according to 

the equation mvr = nh
2π

. (n is an integer, m is the mass of the electron and v its 

speed in an orbit of radius r.) See below for an explanation.
■ This equation very successfully predicted the energy levels of the hydrogen atom.
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Key concept
In the Bohr model of the hydrogen 
atoms the electron was in constant 
circular orbit around the proton, 
but its orbital radius could only 
have one of a series of possible 
values, dependent upon its angular 
momentum.

Expert tips

Classical physics predicts that an orbiting charged particle (an electron) will emit 
electromagnetic radiation and spiral inwards as its energy decreases. The Bohr 
model contradicted this concept.

The rotational angular momentum of any mass moving in a circular path is equal 
to the linear momentum, mv, multiplied by the radius, r, of the motion. The SI 
unit is kg m2 s−1. Angular momentum is covered in Option B.

■ With the discovery that electrons have wave properties (see the next section), 
Bohr’s equation could be explained by considering that a whole number of 
electron wavelengths had to fit into a circumference of a circle around the 

nucleus (see Figure 12.10). The possible values for the discrete wavelengths are 

then 2πr
1

, 2πr
2

, 2πr
3

, etc. That is, possible values for λ = 2πr
n . But we know the de 

Broglie wavelength of the electron (see below), λ = hp or h
mv. Combining these 

wavelength equations leads to mvr =  nh
2π

, as above.
■ This theory for understanding the energy levels of hydrogen does not apply so 

easily to more massive atoms with many electrons, but the basic principle of 
explaining energy levels using standing waves still applies.



12 Quantum and nuclear physics212

QUESTIONS TO CHECK UNDERSTANDING

7 Show that the equation –13.6
n2  successfully predicts the energy levels of 

hydrogen shown in Figure 12.8.

8 a If the electron in a hydrogen atom in its ground state is orbiting at a 
distance of 5.3 × 10−11 m from the nucleus, calculate:

i its angular momentum

ii its linear momentum. 

b Determine the angular momentum of an electron in the lowest excited 
state.

Matter waves 
■ Electromagnetic radiation has some properties that require an explanation 

in terms of waves (diffraction and interference), and some properties 
(photoelectric emission) which require a photon/particle explanation. This is 
known as wave–particle duality.

 De Broglie was the first to expand this concept to suggest the ‘opposite’ was 
also true: that atomic particles have wave properties, so that they may be 
called matter waves. De Broglie suggested that the wavelength of a particle 
was inversely proportional to its momentum.

■ The de Broglie wavelength of a particle, λ = hp, where p represents the 
momentum of the electron and h represents Planck’s constant. 

■ All moving particles, in principle, show wave-like properties. However, only 
sub-atomic particles (like electrons, protons and neutrons) and atoms or ions 
which have very small mass (and momentum), will have a wavelength large 
enough to exhibit observable wave properties (diffraction and interference) in 
experiments.

 Discussing experimental evidence for matter waves, 
including an experiment in which the wave nature 
of electrons is evident 

■ The wave nature (diffraction) of electrons can be demonstrated in a school 
laboratory with equipment like that shown in Figure 12.9.
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  Figure 12.9

■ The electrons are accelerated to high speeds so that they have enough energy 
to pass through a very thin graphite crystal, which diffracts the electron 
waves in a way similar to a diffraction grating diffracting light (Section 9.3). 
Diffraction rings (rather than fringes or spots) are seen because of the random 
arrangement of crystalline areas within the graphite.

■ As with the diffraction of light through a grating, the measurement 
of diffraction angles can be used with a knowledge of the spacings of 
the diffracting structure (separation of carbon atoms) to determine the 
wavelength. The two rings in Figure 12.9 are caused by diffraction from two 
particular sets of layers of atoms within the graphite crystal.

Key concept
The de Broglie hypothesis: all 
particles have wave properties, 
each with a wavelength inversely 
proportional to its momentum. 
The de Broglie wavelength, λ = hp

Key concept
The diffraction of an electron 
beam as it passes though the 
regular structure of a thin 
(graphite) crystal is evidence for 
the wave nature of the electrons.



12.1 The interaction of matter with radiation 213

Expert tip

The Davisson–Germer experiment was the first to confirm the de Broglie 
hypothesis. Similar in principle to the experiment shown in Figure 12.9, it involved 
scattering a beam of electrons from a nickel crystal. The electrons were diffracted 
by the regularity of the arrangement of atoms in the surface of the nickel and 
constructively interfered only at certain angles.

■ If an electron of mass me and charge e is accelerated by a potential difference 

of V, then we can use EK = p2

2me
 (from Section 2.3) = eV, and λ = hp to determine 

the de Broglie wavelength of the electron.

 Fitting electron waves into atoms 
■ The discovery that electrons had wave properties opened the way to 

understanding why atoms have energy levels. 
■ In Section 4.4 we learned that confined waves can exist only as a series of 

standing waves with different wavelengths. Electrons exist within atoms with 
discrete energies because they are standing waves of discrete wavelengths.

■ Figure 12.10 shows simplified examples: fitting three, four and five wavelengths 
into the circumference of an orbit. Each of these would correspond to a 
different discrete wavelength and energy for the electron.

■ For many reasons this is a much simplified model, but it does illustrate an 
important principle: how an appreciation of electron standing waves leads to 
an understanding of the quantization of energy levels.

Key concept
Electrons within atoms exist as 
standing waves. These waves 
can only have certain discrete 
wavelengths and energies.

nucleus

n = 3

n = 4
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Figure 12.10

QUESTIONS TO CHECK UNDERSTANDING
 9 What is the wavelength associated with an alpha particle travelling at 5% of 

the speed of light? (Assume mass of alpha particle = 6.64 × 10−27 kg.)

10 What is the approximate speed of an electron that has the same 
wavelength as a typical X-ray?

11 In an experiment like that shown in Figure 12.9 electrons were accelerated 
by a p.d. of 5000 V. 

a Determine the speed of the accelerated electrons (assume they started 
from rest). 

b Calculate the momentum of an accelerated electron. 

c What is the de Broglie wavelength of the electrons? 

d If the electrons were diffracted by layers of carbon atoms of spacing 
1.4 × 10−10 m, use the diffraction grating equation to estimate the angle 
through which they might be diffracted. 

e Discuss the effect on all your answers if the p.d. accelerating the 
electrons was doubled.

Pair production 
■ Another example of the interaction of matter with radiation is the production 

of a pair of particles when a (gamma ray) photon interacts with a nucleus. 
The photon is converted into two particles, the nucleus is unchanged. This 
is only possible if the two particles are a particle–antiparticle pair (so that the 
conservation rules apply). This is called pair production.

■ Antimatter was briefly introduced in Section 7.3. For every elementary 
particle there is an antiparticle which has same mass as the particle, but with 
the opposite charge (if it is charged), and opposite quantum numbers. A few 
uncharged particles, like photons, are their own antiparticles.

■ An energetic gamma ray photon can undergo pair production (γ → e− + e+) 
if it passes into the strong electric field close to a nucleus. The reason why a 
nucleus is needed is explained below.

Key concept
An electron–positron pair can be 
produced from a gamma ray if it 
has enough energy and interacts 
with a nucleus.
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■ Figure 12.11 represents the production of an electron–positron pair. Figure 
12.12 shows a Feynman diagram of the interaction. 

■ A more energetic photon may be able to produce pairs of more massive 
particles, for example, a muon and antimuon. 

 In order for pair production to be possible, the energy carried by the photon 
must be greater than the sum of the rest mass-energies of the particles 
produced. For an electron–positron pair the total rest mass-energy is 
2 × 0.511 MeVc−2. This corresponds to a minimum photon frequency of 
2.47 × 1020 Hz. If the photon has higher frequency (greater energy) the extra 
energy will be given to the kinetic energy of the electron and positron. 

■ A third particle, the nucleus, is involved because if only two particles were 
involved momentum could not be conserved. The nucleus will change 
momentum, but is otherwise unaffected. 

Pair annihilation 
■ Figure 12.13 shows the annihilation of an electron–positron pair  

(e− + e+ → γ + γ), and Figure 12.14 represents the same event with a 
Feynman diagram.

■ If we assume that the particles had insignificant combined momentum, then 
the two gamma rays must move off in opposite directions (conservation 
of momentum), each with half the combined mass-energy of the original 
particles.

e+

e–

photon

nucleus

Figure 12.11
e–

e+

Figure 12.12

Key concept
When a particle interacts with its 
antiparticle their mass-energy is 
completely transferred into two 
gamma ray photons (or, at higher 
energies, other particles). This is 
called pair annihilation.
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QUESTIONS TO CHECK UNDERSTANDING
12 Explain why a third particle (a nucleus) is necessary in pair production..

13 a Show why a minimum photon frequency of 2.47 × 1020 Hz is needed for 
pair production. 

b What is the wavelength of this gamma ray?

14 Explain why you would not normally expect pair annihilation to result in a 
single photon. 

Probability waves 
■ Diffraction and interference patterns can be explained satisfactorily using the 

wave model for electrons and electromagnetic radiation, but when we try to 
understand these phenomena using the photon model we immediately have 
problems: for example, how is it possible that identical photons following the 
same path under identical conditions can move in different (non-random) 
directions after passing through a slit? 

Key concept
The exact behaviour of individual 
photons/particles is unpredictable. 
This uncertainty is the true nature 
of the sub-atomic (quantum) 
world, it is not a statement that we 
do not have enough information, 
or that it is too difficult to know.
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■ However, it is possible to predict the overall behaviour of large numbers 
of photons/particles. For example we may know with ‘certainty’ the shape 
of a diffraction pattern, but not the behaviour of the individual photons 
that produced it. Figure 12.15 shows a representation of the distribution 
of photons which have arrived in a diffraction pattern at very low 
intensity. The developing pattern is seen but the locations of the arrival of 
individual photons was unpredictable, and only become known after they 
had arrived.

■ Predicting the exact individual behaviour of particles is not possible, we can 
only describe the probabilities of a range of possible outcomes. This uncertain 
behaviour of photons/particles (including electrons) is fundamental in atomic 
physics and it was very important that a mathematical description of the 
probabilities was developed. This came with the wave function developed by 
Schrödinger and others: 

The wave function 
■ In the macroscopic world we would describe the motion of a ball (for 

example) by stating its position and velocity, but in the sub-atomic world, 
these properties of a particle are always uncertain. A description in terms of 
probabilities is needed.

■ The wave function of a particle, is a mathematical model involving 
probabilities and there is no simple visualization. Further mathematical 
details are not needed in the IB Physics course.

■ The wave function may be considered to be an equation describing the 
amplitude of the particle wave (de Broglie wave), but there is no physical 
significance to that interpretation. 

 The wave function of a particle extends throughout all space. This means 
that, theoretically, a particle can be located anywhere and everywhere, 
although most probabilities are vanishingly small.

 The square of the wave function has very important significance. The 
probability of finding a particle at any point in space is predicted by the square 
of the absolute amplitude of its wave function at that point, |Ψ|2. 
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■ Figure 12.16 shows a simple example, the probability density of an electron 
in a hydrogen atom. We cannot know for sure where the electron is. It is 
everywhere (except in the nucleus), with varying probabilities: the graph 
shows that the electron is most likely to be at a distance of 0.5 × 10−10 m from 
the nucleus.

Figure 12.15

Key concepts 
The wave function of a particle, 
Ψ(x, t), fully describes the state 
of a particle at any given point in 
space at any given time.

The probability of finding a 
particle at a distance r from a 
reference point, in unit volume, 
V, is known as its probability 
density, P(r). P(r) = |Ψ|2ΔV
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The uncertainty principle for energy 
and time, and position and momentum 
■ The position, x, and momentum, p, of a moving photon/particle cannot be 

known exactly. The Heisenberg uncertainty principle quantifies this 
uncertainty by linking two variables: ΔxΔp ≥ h

4π
. Δx represents the uncertainty 

in the measurement of position and Δp represents the uncertainty in the 
measurement of momentum. Position and momentum are described as 
conjugate variables.

 From this equation we can see that the more precisely the position of a photon/
particle is specified (smaller Δx) the less precisely the momentum is known 
(greater Δp), and vice versa. If one quantity is known perfectly, the other has 
infinite uncertainty.

■ If a particle has a well-defined de Broglie wavelength, then its momentum is 
known precisely, so there can be no knowledge of its position.

■ Energy, E, and time, t, are two other variables linked by the uncertainty 
principle: ΔEΔt ≥ h

4π
.

■ The consequences of the uncertainty principle are considerable, as the 
following examples show.

 Stating order of magnitude estimates from the 
uncertainty principle 

 I Energy of the ground state of an atom
■ We can use an estimate of the radius of a hydrogen atom to determine an 

approximate value for the minimum kinetic energy, EK, of an electron in 
that atom: if radius, r ≈ 0.5 × 10−10 m and we assume that the position of the 
electron is uncertain within that distance, then Δx = r = 0.5 × 10−10 m, and Δp 

can be determined from ΔxΔp ≥ h
4π

. Then EK = p2

2m. 
■ If required, the electric potential energy can be determined from EP = 

kq1q2

r
(Chapter 10). If we imagine that an atom was smaller, then the kinetic energy 
of the electron (as calculated above) would increase while the potential energy 
would decrease. The actual size of the atom (r ≈ 0.5 × 10−10 m) is such that it 
results in the smallest total energy (kinetic energy + potential energy). 

Key concepts
The equations expressing the 
Heisenberg uncertainty principle 
show that the more precisely the 
position of a particle is known, 
the less certainty there is about its 
momentum (and vice versa).

Energy and time are similarly inter-
connected.

QUESTIONS TO CHECK UNDERSTANDING
15 Explain why a wave function is needed to describe an electron.

16 Scientists sometimes refer to ‘electron clouds’ and Figure 12.17 shows 
a cloud which corresponds 
approximately to Figure 12.16. 
Discuss the use of this term.

17 Figure 12.18 shows the probability 
density for electrons in an atom 
and how it varies with distance 
from the nucleus. Describe where 
the electrons are most likely to be 
located.
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 II Electrons cannot exist in nuclei
■ If we propose that an electron is positioned somewhere in the nucleus of a 

hydrogen atom of diameter ≈ 10−15 m, then 10−15 m is the uncertainty in its 
position (Δx). Inserting this value in ΔxΔp ≥ h

4π
 leads to Δp ≈ 5 × 10−20 kg m s−1. 

An electron with this momentum would have too much energy to be retained 
within the hydrogen nucleus. So, the uncertainty principle explains why 
electrons cannot be found in nuclei.

 III Lifetime of an electron in an excited state
■ Suppose an electron jumps from the ground state of an atom to an excited 

energy state which is 8 eV higher. If it remains in that state for 2 × 10−9 s, then 
the uncertainty in the energy level (from ΔEΔt ≥ h

4π
) is ≈ 10−7 eV. This is very 

small percentage of the energy level, which means that it can be determined 
accurately.

QUESTIONS TO CHECK UNDERSTANDING
18 Figure 12.19 shows the wave function of two 

electrons at a certain time. 

a Which electron has the greater uncertainty 
in position? 

b Which has the greater uncertainty in 
momentum?

19 Consider example I above. 

a Show that the uncertainty in momentum is 
about 1 × 10−24 kg m s−1. 

b Show that the kinetic energy of the 
electron is about 6 × 10−19 J. 

c Calculate the electric potential energy of the hydrogen atom. 

d Estimate (in eV) the overall energy of the atom in this state. 

20 Consider example II above. 

a Determine the kinetic energy of an electron if it was constrained inside 
the nucleus of a hydrogen atom. 

b Explain, with the aid of a suitable calculation, why an electron with this 
kinetic energy cannot be restrained within such a small nucleus.

21 Confirm the uncertainty in energy quoted in example III above.

22 Consider again the pair production shown in Figure 12.11, for which we 
have said that the photon must have a minimum energy of about 1 MeV. 
An understanding of the uncertainty principle shows us that the pair could 
be produced from a much less energetic photon if they annihilated again a 
short time later. Calculate the maximum lifetime of a positron–electron pair 
produced in this way. 
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Common mistake

In a question, such as question 19, 
in which you are asked to confirm 
an approximate figure given in the 
question, you should quote your 
answer to more significant figures 
than those given (even if the physics 
does not justify them), before 
rounding to compare to the answer 
provided. Many students just give the 
same answer as was provided in the 
question.

Tunnelling, potential barrier and 
factors affecting tunnelling probability 

 Potential barriers 
■ Particles within atoms are constrained by attractive forces, for example 

negative electrons being attracted to positive nuclei. Potential energy is stored 
in these situations and we may describe the particles as being ‘trapped’ in 
potential wells, or behind potential barriers. 

 Figure 12.20 shows a two-dimensional representation of a (gravitational) 
potential well. A ball rolling on a friction-less surface like this may continually 
exchange kinetic energy and potential energy, but it cannot ‘escape’ unless it 
has sufficient kinetic energy.

■ The potential around a proton in a hydrogen atom can be similarly visualized. 
In classical physics an electron is trapped in the atom unless it has enough 
kinetic energy to get out of the potential well created by the electric force of 

Figure 12.20
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attraction. Figure 12.21 shows three simplified one-dimensional representations 
of an electron in a hydrogen atom trapped between rectangular (for simplicity) 
potential barriers.

electron

a b c

zero probability of electron
being outside the barrier

c
P(r)

r

small probability of electron
being outside the barrier

Figure 12.21

■ Figure 12.21a represents an electron as a particle moving around between 
potential barriers, but with insufficient kinetic energy to escape.

■ Figure 12.21b recognizes the wave properties of the electron, which is drawn as 
a standing wave with nodes at the potential barriers.

■ Figure 12.21c represents the electron by its probability density, P(r). Note that 
this does not decrease to zero in the barrier, or outside. 

 Tunnelling 
■ The wave function for the electron shown in Figure 12.21c is continuous 

through the potential barriers around it, and non-zero on the other side. Classical 
physics tells us that the electron cannot overcome the attractive force, but in 
quantum physics there is a finite chance that an electron can tunnel through 
the barrier.

 The probability of quantum tunnelling depends on the mass and energy of 
the particle, and the ‘height’ and thickness of the barrier.

■ Quantum tunnelling is only possible if the particle ‘borrows’ and ‘repays’ 
the extra energy required in a short enough time interval (Heisenberg’s 
uncertainty principle).

■ The emission of alpha particles from a nucleus is an interesting example of 
quantum tunnelling. Figure 12.22a represents the variation of potential energy 
around the nucleus from which an alpha particle was emitted.
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■ In this example, an emitted alpha particle has kinetic energy of 6 MeV and is 
considered to be moving to the right. It is represented while in the nucleus on 
the left of Figure 12.22b by a free particle wave function with arbitrary units. 
By the principles of classical physics the alpha particle is trapped inside the 
nucleus because it does not have enough energy to overcome the potential 
barrier due to the electric attraction between the alpha particle and the rest 
of the nucleus: the energy required is shown by the red curve in Figure 12.22a. 
In this example it decreases from a maximum of 20 MeV, with increasing 
separation. 

■ If the same alpha particle with the same energy was 3.3 × 10−14 m from the 
nucleus, it would then be able to escape. The shaded area in Figure 12.22a 
represents the height and width of the potential barrier. Some alpha particles 

Key concept
Quantum physics allows particles 
to do things that would be 
impossible under the principles of 
classical physics.
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will be emitted because the wave function is continuous through and after the 
barrier. The emitted free alpha particle wave function is shown on the right of 
Figure 12.22b.

■ The probability of alpha particle tunnelling can be linked to the half-life of 
the radioactive nuclide (see Section 12.2). 

■ Nuclear fusion provides a contrasting example of a particle tunnelling into a 
barrier. Classical physics can be used to determine a theoretical minimum 
kinetic energy (and therefore temperature) necessary for protons to get close 
enough together for fusion to occur. Quantum physics explains why a small 
percentage of protons can do this at much lower temperatures.

QUESTIONS TO CHECK UNDERSTANDING
23 Explain the concept of quantum tunnelling.

24 If an alpha particle is emitted from a nucleus with kinetic energy which is 
23 MeV less than the height of the potential barrier surrounding the nucleus, 
calculate the maximum time during which quantum tunnelling can occur.

25 Explain how it is possible that nuclear fusion can occur in the Sun, even 
when the temperature is lower than that predicted to be necessary by 
classical physics.

NATURE OF SCIENCE: 

 Observations; paradigm shifts
Observations and measurements of the line spectra emitted (or absorbed) by 
atoms are central to an understanding of atomic structure and the nature of 
electromagnetic radiation. Hydrogen is the simplest atom and it produces the 
simplest spectrum. An understanding of the hydrogen spectrum was the necessary 
first step before more complicated atomic spectra could be explained, and in the 
first 25 years of the twentieth century Bohr, and other scientists, devoted much 
time to observing and measuring spectra.

The introductions of wave–particle duality and quantum theory are two of many 
examples of paradigm shifts in physics and science: the accepted models and theories 
concerning an area of human knowledge are overturned, or at least significantly 
altered, as radical new ideas become widely accepted. Such shifts are commonly 
associated with major developments in scientific understanding, but it can be 
difficult for people to accept that previously held beliefs have to be seen as ‘wrong’. 

12.2 Nuclear physics
Essential idea: The idea of discreteness that we met in the atomic world continues 
to exist in the nuclear world as well.

Rutherford scattering and nuclear radius 
■ The Rutherford–Geiger–Marsden experiment that led to the discovery of 

the nucleus was described in Section 7.3. In this section we will discuss the 
experiment in more mathematical detail.

■ In Section 7.3 we noted that the pattern of Rutherford scattering was 
explained by using Coulomb’s law:

  FE = 
kqαqn

r2

 where qα is the charge on the alpha particle, qn is the charge on the nucleus 
and r is the separation of their centres.

■ Figure 12.23 shows a two-dimensional gravitational analogue experiment 
which is often used to represent alpha particle scattering. Balls rolling on 
the hill move in a similar way to alpha particles approaching a nucleus. The 
potential hill is the opposite of a potential well (as discussed in Section 12.1), 
with its 1r shape representing the potential (energy) changes when there is an 
inverse square law of repulsion between points. 

Figure 12.23
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■ Figure 12.24 shows an alpha particle (doubly positively charged) directly 
approaching a gold nucleus (with 79 positively charged protons). The alpha 
particle is decelerated by the repulsive force between positive charges and its 
kinetic energy is transferred to electric potential energy. For simplicity we will 
assume that the nucleus remains stationary.

■ At some point the alpha particle’s velocity will be momentarily reduced to 
zero, before it accelerated back the way it came. Because the alpha particle 
has considerable kinetic energy, we may assume that it gets very close to 
the nucleus: the closest separation of their centres is considered to be an 
approximate estimate for the radius of the nucleus. 

■ This separation can be determined using an energy consideration. Initial kinetic 
energy of alpha particle = electric potential energy, EP, at closest point. For example, 

equating an alpha particle of energy 5.0 MeV to EP = kqαqn

r
 (from Chapter 10), leads 

to an estimate of the radius of the gold nucleus (r) of about 5 × 10−14 m. This assumes 
that no significant amount of energy is transferred to the nucleus.

■ But note that, although this is an important estimate, this simple calculation is 
based only on the use of the generic inverse square law of electric repulsion for 
point charges and the chosen energy of an alpha particle, rather than precise 
experimental data. For example, if less energetic alpha particles and/or nuclei 
with more charge were chosen for the calculation, a larger radius would be 
predicted (without experimental evidence).

■ For more detailed information it is necessary to use alpha particles with greater 
energy, or bombarding particles which are not repelled (e.g. electrons – see below).

 Explaining deviations from Rutherford scattering in 
high energy experiments 

■ If very high-energy alpha particles are used, they may actually enter nuclei and 
therefore be affected by the nuclear strong forces. Under such circumstances 
their interactions with nuclei cannot be explained simply by an inverse square 
law of electric repulsion.

Key concept
An alpha particle moving directly 
towards a nucleus will come to a 
momentary stop when all of its 
kinetic energy has been transferred 
to electric potential energy. The 
separation of their centres is then 
considered to be a estimate of 
nuclear radius.

Key concept
If alpha particles have enough 
energy to get very close to (or 
enter) the nucleus then their 
scattering will also be affected 
by the short-range strong nuclear 
force.

QUESTIONS TO CHECK UNDERSTANDING
26 A 7.2 MeV alpha particle is moving directly towards a stationary 204

82 Pb nucleus. 

a What is the initial speed of the alpha particle (mass = 6.64 × 10−27 kg)? 

b Assuming that the nucleus cannot change position, what will be the 
smallest distance between their centres? 

c Explain why your answer may be considered as an estimate of the radius 
of the lead nucleus. 

d Explain why the alpha particle would not get so close to the nucleus if 
the lead atom was able to move freely. 

e If in an isolated system, the lead nucleus moved off with a speed 
of 1.8 × 106 m s−1, determine the final velocity of the alpha particle.

27 a What is the approximate range of the strong nuclear force? 

b What types of particles are affected by this force? 

c In Rutherford scattering, why are only the very energetic alpha particles 
affected by the strong nuclear force?

+2e +2e
energy = EK

α-particle
kinetic energy transferred to

electric potential energy

α-particle
stationary
(EP = EK)

energy = EP

gold
nucleus

+79e

r

  Figure 12.24
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Describing a scattering experiment 
including location of minimum 
intensity for the diffracted particles 
based on their de Broglie wavelength 
■ The scattering of high-energy electrons provides more accurate information 

about nuclear diameters than Rutherford scattering. 
■ Typically the electrons are accelerated by very high voltages, such that 

their wavelengths become comparable to nuclear diameters (≈ 10−15 m) and 
diffraction effects are maximized.

 Electrons are much smaller than alpha particles and they are leptons, so that 
they are unaffected by the strong nuclear forces which affect high-energy alpha 
particles when they enter a nuclide, although they are affected by electric 
forces.

■ We know that electrons behave as waves and the scattering process by nuclei 
has some similarities with the diffraction of light (photons) of wavelength λ by 
a narrow slit of width b, in which the first diffraction minimum occurs at an 
angle of sin θ ≈ θ = λb (Section 9.2).

 Figure 12.25 shows a simplified version of the experimental arrangement. The 
intensity of the scattered electrons is measured for different angles. Figure 
12.26 shows typical results.

■ Measurement of the angle for the first diffraction minimum, θ, can be used 
to determine the nuclear diameter D: sin p ≈ k

D
, where λ is the de Broglie 

wavelength of the electrons used. The small angle approximation (sin θ ≈ θ) is 
usually not appropriate for use with electron scattering off nuclei (because the 
angles are usually too large).

 Experiments with different nuclei confirm that nuclear radii, R, (half the 
diameters) are proportional to the cube root of the number of nucleons, A. 
This conclusion is consistent with a nuclear model in which the nucleons 
are arranged close together, but remain separate, as shown in Figure 12.27. 
This model also suggests that nuclear density is the same for all nuclides 
(see below).

■ Nuclear radii can be calculated from R = R0A , where R0 is a constant known 
as the Fermi radius (= 1.2 × 10−15 m).

Nuclear density 
■ The nuclear density of a particular nuclide can be determined from density

= mass
volume

. Experimental results suggest that nuclei are spherical in shape, so 

that their volume, V = 4
3( ( R3.

■ All nuclear densities are approximately equal (2 × 1017 kg m−3). The density of 
nuclei is equivalent to a cubic centimetre having a mass about equal to that of 
a large mountain. 

■ The only macroscopic objects with a density as large as nuclei are neutron 
stars and black holes (collapsed massive stars).

Expert tip

Electrons with such high energies will 
have masses significantly greater than 
their rest masses. This is a relativistic 
effect, as discussed in Option A.
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Key concept
High energy electrons have very 
short wavelengths and are diffracted 
by nuclei. The angle of the first 
diffraction minimum can be used to 
determine nuclear diameter.

QUESTIONS TO CHECK UNDERSTANDING
28 a What is the momentum of an electron which has a de Broglie wavelength of 1.0 × 10−15 m? 

b Calculate the kinetic energy in MeV of this electron. 

c What p.d. is needed to accelerate the electron from rest to this energy? 

29 When electrons of wavelength 2.7 × 10−15 m were incident on iron nuclei, the first scattering minimum was detected at 
an angle of 20°. 

a What is the approximate diameter of an iron nucleus? 

b If the p.d. accelerating the electrons was increased, what would happen to the scattering angle?
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30 a Explain why the experimental fact that nuclear radii are proportional to the cube root of their nucleon number 
suggests that the nucleons are separate, but closely packed together. 

b Suggest why it is reasonable to suggest that nuclei are approximately spherical in shape.

31 a What is the radius of a 63
29Cu nucleus? 

b Confirm that the density of this nucleus ≈ 2 × 1017 kg m−3.

32 An atomic nucleus has a radius of 3.6 × 10−15 m. Suggest what element this might be.

33 As their name suggests, neutron stars are composed mostly of neutrons. If a neutron star has a radius of 20 km, 
estimate:

a the number of neutrons it contains

b the total mass of the star.

 (Assume that the radius of a neutron is 1.2 × 10−15 m.)

Nuclear energy levels 
■ In Chapter 7 we saw that there are discrete energy levels within atoms. The 

concept of the quantization of energy on the microscopic scale also applies 
to nuclei.

 Describing experimental evidence for nuclear 
energy levels 

■ The alpha particles and gamma rays that are emitted from any particular 
unstable nuclei always have exactly the same discrete energies.

■ The blue arrows on the right in Figure 12.28 show five possible alpha particle 
decays of bismuth-212. The alpha particle with the most energy (5.97 MeV) 
is emitted when the daughter nucleus (thallium-208) is left in its ground 
state. There are four other possible energies for alpha particles emitted from 
bismuth-212, each of which leaves the thallium nucleus in an excited state.

■ When the excited thallium nucleus decays to its ground state, one or more 
gamma rays photons will be emitted. The photon energies emitted due to 
nuclear transitions are much greater than the photon energies released by 
electron transitions.

■ When an alpha particle is emitted, the nucleus will recoil in exactly the 
opposite direction (conservation of momentum in one direction). See 
Figure 12.29. 

■ But the emission of beta particles from unstable nuclei (Section 7.1) is more 
complicated because three particles are involved, see Figure 12.30. The 
three particles may move in different directions and applying the law of 
conservation of momentum in three dimensions shows that continuous ranges 
of all particle velocities are possible. This explains why beta particle spectra 
are observed.

Key concept
The discrete nature of emitted alpha and gamma energies is evidence for the 
existence of discrete nuclear energy levels because the emissions always 
arise as consequences of changes between the same levels.

The neutrino 
■ From Section 7.1 we know that neutrinos or antineutrinos are emitted from a 

nucleus in the process of beta particle decay, see Figure 12.30:
 beta-negative decay beta-positive decay
 n → p + e– + υe p → n + e+ + υe

■ The existence of neutrinos and antineutrinos was first proposed to 
explain why emitted beta particles have continuous ranges of energies 
(see above).
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Three particles can move apart in any combination
of directions and share the available energy in a

continuous range of different ways.

recoil of nucleus

antineutrino electron

Figure 12.30

Key concept
Neutrinos have no charge, very 
small mass and travel at speeds 
close to the speed of light. 
Although they are believed to be 
among the most common particles 
in the universe, they are very 
penetrating and difficult to detect 
because interactions with other 
particles are very, very rare.
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QUESTIONS TO CHECK UNDERSTANDING
34 Consider Figure 12.28. 

a What is the energy of the least energetic alpha particle emitted by Bi-212? 

b i What is the energy of the most energetic gamma ray photon 
released when Tl-208 decays from an excited state? 

ii What is the wavelength of this photon? 

c Compare your answer to part b i with the magnitude of typical energy 
transitions of electrons within atoms (take the hydrogen atom as an 
example).

35 Consider Figure 12.30. Under what circumstance would you expect an 
emitted electron (beta particle) to have the maximum possible energy?

36 a Explain why neutrinos are difficult to detect. 

b What class of particles are neutrinos? 

c List the three types of neutrino. 

d Which fundamental forces act on neutrinos?

The law of radioactive decay 
and the decay constant 
■ In Section 7.1 we discussed how the count rate from a radioactive source varies 

with time. Graphical examples were given and the rate of decay characterized 
by the concept of half-life, T1/2. See Figure 7.12 (Chapter 7). A dice analogue 
experiment was used to help explain the shape of the graphs.

■ A count-rate from a pure radioactive source decreases exponentially because the 
rate of decay of nuclide depends on the number left undecayed (which itself 
reduces with time). 

■ As discussed in section 11.3, an exponential decrease (decay) occurs when 
the rate of change of any quantity N, – ΔN

Δt
, is proportional to the number 

remaining at that moment. ΔN
Δt

 = –λN, where λ is a constant. For radioactivity, 

this is known as the law of radioactive decay and λ is known as the decay 

constant (unit: s−1).
■ The decay constant is defined as the probability of decay per unit time. The 

larger the value of the decay constant, the more rapid the radioactive decay 
and the shorter the half-life.

■ In radioactivity, ΔN
Δt

 is known as the activity (A) of the source. A = λN. One 

 decay per second is called an activity of 1 bequerel, Bq.
■ A received count rate is not equal to the activity of the source, but may often 

be considered to be proportional to it, so that count rates can often be used in 
calculations instead of activities.

 Exponential equations 
■ In Section 11.3 we saw that N = N0 e−kt is a mathematical equation that 

describes any exponential decrease: a quantity falls from a value N0 to N in a 
time t and the rate of decrease is controlled by the size of the constant k (for 
radioactive decay λ is used instead of k, as described above). 

■ Taking logarithms of N = N0 e–λt to the base e (ln) gives ln N = ln N0 – λt.

■ The time taken to fall from N0 to N0

2  is the half-life, T1/2, and inserting these 

values in the highlighted equation leads to T1/2 = 0.693
λ  (Since ln 2 = 0.693).

■ Since the activity, A, of a source is directly proportional to N, it follows that A 
= A0 e–λt, where A0 is the initial activity of the source. Variations in count rates 
may also be calculated in the same way.

■ Because  A = λN, the activity at a time t after the number of undecayed atoms 
was N0 can be determined from A = λN0 e–λt.

Key concepts
The activity, A, of a radioactive 
source is the number of decays 
per second (= ΔN

Δt ). Activity is 
proportional to the number of 
undecayed atoms at that time, N. 
The rate of decay is represented by 
the decay constant, λ.  
A = ΔN

Δt
 = –λN. 

λ = ln 
2

T1/2

Key concept
The number N of undecayed 
nuclei in a radioactive sample 
after time t is given by the 
equation N = N0 e–λt, where N0 is 
the number of undecayed nuclei 
at the start of timing.
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 Solving problems involving the radioactive decay 
law for arbitrary time intervals 

QUESTIONS TO CHECK UNDERSTANDING
37 The isotope cobalt-60 is often used in schools for gamma ray 

demonstrations. It has a half-life of 5.27 years. After 2 years in a school the 
activity of the source has decreased to 1.5 × 105 Bq. 

a Calculate the number of undecayed cobalt-60 atoms in the source. 

b Determine the activity of the source when it was first delivered to the 
school.

38 Technetium-99 is used widely for medical 
diagnoses. It has a half-life of 6.0 h. 

a What is the decay constant of this isotope? 

b If some of this isotope, with an activity of 
800 MBq was injected into a patient (see 
Figure 12.31) at 14.00 in the afternoon, 
what would its activity be at 18.00 on the 
next day?

39 The number of unstable nuclei in a rock 
sample of a uranium isotope is believed to have 
decreased from 2.50 × 1017 to 2.25 × 1017 in a time of 680 million years. 
Estimate the half-life of this isotope.

40 An isotope of protactinium was used in a school laboratory for half-life 
determination. The count rate fell from 72 s−1 to 7 s−1 in 5 minutes. If the 
average background count was 1 s−1, estimate the half-life of the isotope.

 Explaining the methods for measuring short and 
long half-lives 

■ As discussed in Section 7.1, the half-life of some isotopes can be found by 
measuring count rates over a suitable period of time. (The count rates should 
be adjusted for the background count.) For this method to be possible, the 
count rate must decrease significantly in the time available. For example, if the 
experiment has to be completed in one hour, the half-life being determined 
should probably be no more than two hours.

Expert tips

Radioactivity calculations in this course involve pure sources. In 
practice, nuclides may decay into other unstable nuclides (producing 
a decay ‘chain’), so that sources often contain mixtures of radioactive 
nuclides, although the activity may be dominated by the decay of one 
particular nuclide.

Figure 12.32 shows one way of measuring the radiation emitted by 
just atoms of just one particular nuclide (protactinium). The sealed 
strong plastic bottle contains two layers of different liquids. The 
lower layer contains a uranium isotope and all of its decay products 
(including protactinium). The upper layer contains an organic solvent. 
When the liquids are mixed by shaking, any protactinium present is 
removed by the organic solvent. The liquids are allowed to separate 
again before measurements are started.

Figure 12.32
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Figure 12.31

■ In Section 7.1 we showed how a value for a half-life could be determined 
from a graph of count rate–time. We are now also able to use the exponential 
equation A = A0 e–λt with two count rates (instead of activities, A) and the 
time, t, between them to determine a value for the decay constant, λ. The 

half-life can then be calculated from T1/2 = 0.693
λ

.
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■ Drawing a graph will improve the accuracy of the half-life determination: since 
ln A = ln A0 – λt, a graph of ln A–t (using count rates), will have a gradient of 
–λ (compare with y = mx + c), from which the half-life can be determined. See 
Figure 12.33.
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gradient = –λ

t
0

In A

 
  Figure 12.33

■ If a radionuclide has a long half-life, then its activity will be effectively constant 
over a measurable period of time, so that the previously described method 
cannot be used. 

■ Instead, the number of nuclei, N, in a pure sample can be calculated from its 
mass, its molar mass and Avogadro’s constant mNA

molar massN =( (. The measured 

activity, A = −λN can then be used to calculate the decay constant.
 It is probable that a sample of an isotope with a long half-life will have 

a very low activity, and this may reduce the accuracy of the experiment, 
especially if the magnitude of the count is comparable to the magnitude of 
the background count. 

 This method requires measurement of the actual activity of the source, 
rather than just a count rate. Figure 12.34 explains the difference.

 The ratio 4πr2

area of detector can be used to determine the total count that 
would be due to radiation passing through a spherical surface of radius 
r. This can be assumed to be equal to the activity if no radiation is 
absorbed between the source, and the detector records all the radiation 
that enters it.

Key concept
Determining a value for a very 
long half-life involves measuring 
very low activities and the mass of 
the isotope involved.

radioactive
source

r
area A

radiation
detector

Figure 12.34

QUESTIONS TO CHECK UNDERSTANDING
41 The count rate detected from a radioactive nuclide decreased from 48 s−1 to 

34 s−1 in 1.50 minutes. 

a Determine the half-life of this nuclide. 

b Sketch a graph to show how the count rate changes over a time of 
6.0 minutes (starting at 48 s−1). 

c Draw a ln (count rate)–time graph for the same time.

42 Figure 12.35 shows a ln A–t graph for the decay of a pure isotope. 

a What was the activity of the source at time t = 0? 

b What is the half-life of the isotope?

43 A nuclide has a half-life of 2.0 hours. By what percentage does its activity 
decrease in one hour?

44 A radiation detector with a receiving area of 1.2 cm2 is placed 8.4 cm from a source of activity 6.3 × 104 Bq. 

a Calculate the maximum count rate that could be detected. 

b Explain why your answer is a maximum value. 

c Compare your answer to a typical background count of 0.5 Bq.

45 a How many atoms are present in 1.0 μg of carbon-14? 

b Carbon-14 has a half-life of 5730 years. What is the decay constant for this nuclide? 

c Determine the activity from 1.0 μg of pure carbon-14.

46 Calculate the activity from a 5.0 mg source of pure radium-226. Its half-life is 1600 years.
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Expert tip

The random variation of a 
radioactivity count N is not 
experimental error or uncertainty. It is 
purely a consequence of the random 
nature of the decay process, and it is 
most noticeable with small counts. A 
count of N is often assumed to vary 
by approximately N. This means 
that the percentage uncertainty 
is much greater for small counts. 
For example, a small count rate of 
25 min−1 could be expected to vary 
between 20 min−1  and 30 min−1 
(±20%). Whereas a count rate of 
2500 min−1 ±50 min−1 has only a 
percentage variation of 2%. Low 
count rates are difficult to distinguish 
from similar background rates.
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NATURE OF SCIENCE

 Theoretical advances and inspiration
Discoveries in atomic and nuclear physics have often only occurred because 
physicists were inspired by unexplained observations to make new theoretical 
predictions. The proposed existence and properties of neutrinos is a good example 
of this method of scientific advance. Experiments were then devised specifically to 
test those predictions. 

 Advances in instrumentation
Larger and more powerful particle accelerators together with improved particle 
detection technology have been a major driving force behind recent advances in 
nuclear physics.

 Modern computing power
Enormous amounts of data are collected automatically from particle and radiation 
detectors of various kinds in nuclear physics experiments around the world. The 
analysis of all this information requires computing power that would not have 
been possible until recent years.
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